RESEARCH REPORT

External Research Program

A Research Project to Propose and Validate a Method to Measure the Sound Power Levels Generated by Fans in Field Conditions

CMHC—HOME TO CANADIANS

Canada Mortgage and Housing Corporation (CMHC) has been Canada's national housing agency for more than 60 years.

Together with other housing stakeholders, we help ensure that Canada maintains one of the best housing systems in the world. We are committed to helping Canadians access a wide choice of quality, affordable homes, while making vibrant, healthy communities and cities a reality across the country.

For more information, visit our website at www.cmhc.ca

You can also reach us by phone at 1-800-668-2642 or by fax at 1-800-245-9274.

Outside Canada call 613-748-2003 or fax to 613-748-2016.

Canada Mortgage and Housing Corporation supports the Government of Canada policy on access to information for people with disabilities. If you wish to obtain this publication in alternative formats, call 1-800-668-2642.

A RESEARCH PROJECT TO PROPOSE

AND VALIDATE A METHOD TO

MEASURE THE SOUND POWER LEVELS

GENERATED BY FANS IN FIELD

CONDITIONS

By Michel Morin MJM Acoustical Consultants Inc.

December 1991

CMHC Project Officer: Jacques Rousseau

This project was carried out with the assistance of a grant from Canada Mortgage and Housing Corporation under the terms of the External Research Program (CMHC CR File 6585/M088). The views expressed are those of the authors and do not represent the official views of the Corporation.

ACKNOWLEDGEMENTS	
The author wishes to thank M. Savio Ricciardi of RACAN Industries for supplying the fan and the silencers which were used during the present study	

ABSTRACT

This research project, funded by the CANADA MORTGAGE AND HOUSING CORPORATION is a first attempt to validate a method using intensimetry to measure the sound power levels generated by fans when they are connected to the ductwork of a ventilating system, and operating in real conditions. The goal of the study was to determine the accuracy and limitations of the proposed method. To achieve this, the results of the measurements made according to the proposed procedure were compared with those obtained in a reverberant room using the method described in the AMCA 300 standard.

All the measurements were conducted in the acoustical laboratories of the NATIONAL RESEARCH COUNCIL OF CANADA under the direction of Dr. Alfred Warnock and the author.

TABLE OF CONTENTS

	gements i
	ii
	Summary iii
Résumé	vi
	.on 1
	the Proposed Measurement Procedure 1
	ces 3
-	of the Measurements Performed 3
	Pressure Levels Measurements in the Large
	beration Chamber 3
	I Intensity Measurement in the Small
	beration Chamber 4
	I Intensity Measurements in the Large
	cberant Chamber 5
	mination of the Sound Power Levels Using the
	Intensity Measurements 5
Conclusion	ıs 5
Figure 1	
Graph 1	
Annex 1 -	Measurement procedure which was originally
	presented to CMHC
	Introduction 1
	Procedure 2
	Calibration of the Field Conditions 2
	Measurement of the Fan Sound Power Levels 3
	Precision of the Measurements 4
	Figure
Annex 2 -	Results of all measurements performed - Summary of
	Investigation of Experimental Technique to Measure
	Fan Sound Power In Situ
	Construction 1
	Standard Sound Power Measurements in Reverberation
	Room
	Sound Intensity Measurements 2
	Trial Measurements 2
	Measurements with Speaker Source in Small
	Reverberation Room
	Measurements in the Large Reverberation Room 8
	Intensity Measurements Inside the Duct -
	Speaker Source 9
	Intensity Measurements Outside the Duct -
	Speaker Source 10
	Intensity Measurements Outside the Duct -
	Fan Source 10
	Figures
	Tables

EXECUTIVE SUMMARY

This research project, funded by the CANADA MORTGAGE AND HOUSING CORPORATION is a first attempt to validate a method using intensimetry to measure the sound power levels generated by fans when they are connected to the ductwork of a ventilating system, and operating in real conditions. The goal of the study was to determine the accuracy and limitations of the proposed method. To achieve this, the results of the measurements made according to the proposed procedure were compared with those obtained in a reverberant room using the method described in the AMCA 300 standard.

All the measurements were conducted in the acoustical laboratories of the NATIONAL RESEARCH COUNCIL OF CANADA under the direction of Dr. Alfred Warnock and the author.

In resumé the proposed procedure consists:

- a) in measuring the sound intensity inside and outside a section of duct located immediately after the fan discharge with a loudspeaker emitting pink noise at the position of the fan discharge. This is to perform a calibration of the field conditions and to take into account the sound transmission loss through the duct wall;
- b) in repeating the measurement outside the duct with the fan operating;
- c) in calculating the sound power levels using the data collected in a) and b).

The conclusions reached during this study are:

A) When the sound intensity measurements were made in the low background noise conditions of the large reverberant chamber, the results of 31 third-octave band sound intensity measurements over a total of 42 performed, were reliable.

The SWL determined by the proposed procedure correlate fairly well with the SWL obtained using the reverberant chamber method described in the AMCA 300 procedure for the frequency range going from 50 Hz to 800 Hz with discrepancies inferior to 4 dB except for the 50 Hz band for which a discrepancy of 7 dB was noted.

For the vast majority of ventilating systems, the 50 Hz to 500 Hz frequency range governs the noise control design. The very limited tests results suggest that given a low background noise, the proposed method could be reliable in this range. This would have to be confirmed by further testing involving a large number of tests on different duct sizes.

B) It was hoped that the method proposed would be relatively simple to implement and that it could provide an economical way to measure the sound power levels of fans operating in a multitude of field conditions. It was also thought that the intensimetry technology would permit measurements in noisy environment as publicized in the literature of some manufacturers of these equipments.

In reality however the limitations imposed by intensimetry made the procedure difficult to use in an acoustical environment similar to that of a mechanical room, and unreliable due to the high number of non valid measurements.

This suggests that in field conditions, reliable measurements could not be made in mechanical rooms where the ambient noise level is generally high. The measurements would therefore have to be made outside the mechanical room. Since in many instances the silencers and other noise control devices are installed inside the mechanical room or immediately before or after the mechanical room wall or floor, it would not be possible to evaluate accurately the sound power

M.

levels of the fan without major modifications to the ventilating system. This defeats the purpose of the proposed method: to permit reasonably accurate field measurements of sound power levels generated at the discharge of ventilating equipments when they are installed and operational.

Progress must be made to allow for accurate intensity measurements in noisy environment before the proposed method be further developed for reliability.

«Méthode de mesure des niveaux de puissance sonore des ventilateurs»

RÉSUMÉ

Ce projet de recherche, subventionné par la SOCIÉTÉ CANADIENNE D'HYPOTHÈQUES ET DE LOGEMENT, constitue un premier essai de validation d'une méthode de mesure, par intensimétrie, des niveaux de puissance acoustique produits par des ventilateurs en service lorsqu'ils sont raccordés à des conduits de ventilation. Cette étude a pour but de déterminer la précision et les limites de la méthode proposée. Pour y arriver, les auteurs ont comparé les résultats de mesures prises selon cette méthode avec celles réalisées dans une enceinte de réverbération avec la méthode décrite dans la norme AMCA n° 300.

Toutes les mesures ont été prises dans les laboratoires d'acoustique du CONSEIL NATIONAL DE RECHERCHES DU CANADA sous la direction de M. Alfred Warnock et de l'auteur.

La méthode proposée se résume comme suit :

- a) Mesurer l'intensité sonore à l'intérieur et à l'extérieur d'une section de conduit située immédiatement en aval de la gaine d'extraction du ventilateur où un haut-parleur émet un bruit rose. Il s'agit, par là, de calibrer les conditions réelles de fonctionnement et de tenir compte de la perte de transmission acoustique dans le mur où passe le conduit.
- b) Reprendre la mesure à l'extérieur du conduit pendant le fonctionnement du ventilateur.
- c) Calculer les niveaux de puissance acoustique à l'aide des données recueillies aux étapes a et b.

Cette étude permet de tirer les conclusions suivantes :

A) Lorsque les mesures de l'intensité sonore sont prises en présence d'un faible bruit de fond dans la grande enceinte de réverbération, les résultats de 31 mesures de l'intensité sonore par bandes de tiers d'octave, sur un total de 42 analyses, sont fiables.

Le niveau de puissance acoustique déterminé par la méthode proposée correspond assez bien à celui obtenu en enceinte de réverbération par la méthode décrite dans la norme 300 de l'AMCA pour ce qui est de la bande de fréquence se situant entre 50 et 800 Hz. Les écarts observés sont inférieurs à 4 dB, sauf pour la bande de 50 Hz pour laquelle on a noté un écart de 7 dB.

Pour la grande majorité des ventilateurs, l'atténuation du bruit est fonction des bandes de fréquence comprises entre 50 et 500 Hz. Des essais très limités laissent supposer qu'en présence d'un faible bruit de fond, la méthode proposée pourrait être

fiable dans cette plage de fréquence. Il faudra toutefois le confirmer au moyen de plus amples analyses qui mettront à contribution un grand nombre d'essais sur des conduits de différentes dimensions.

B) On espérait que la méthode proposée serait relativement simple à mettre en application et qu'elle constituerait une façon économique de mesurer les niveaux de puissance acoustique des ventilateurs en service dans de multiples conditions. On croyait également que la technologie de l'intensimétrie permettrait d'obtenir des mesures dans des milieux bruyants, ainsi que la documentation de certains fabricants le faisait miroiter.

La réalité est tout autre, cependant, car les contraintes imposées par l'intensimétrie rendent la méthode difficile à utiliser dans un milieu acoustique semblable à celui d'un local technique et peu fiable à cause du grand nombre de mesures non valables.

Il serait donc impossible de réaliser des essais en service fiables dans les locaux techniques où le niveau de bruit ambiant est généralement élevé. Il faudrait alors prendre les mesures à l'extérieur du local technique. Or, comme les silencieux et autres dispositifs de lutte contre le bruit sont souvent placés à l'intérieur du local technique ou bien immédiatement devant ou derrière le mur ou le plancher du local technique, il ne serait pas possible d'évaluer avec précision le niveau de puissance acoustique du ventilateur sans modifier considérablement l'installation de ventilation. Cela va donc à l'encontre du but visé par la méthode proposée, c'est-à-dire réaliser des analyses en service relativement précises des niveaux de puissance acoustique produits à l'extraction par les ventilateurs.

Il faudra accomplir des progrès permettant de mesurer l'intensité de façon précise dans des milieux bruyants avant de pouvoir évaluer la fiabilité de la méthode proposée.

National Office

Bureau national

700 Montreal Road Ottawa ON KIA 0P7 Telephone: (613) 748-2000 700 chemin de Montréal Ottawa ON KIA 0P7 Téléphone : (613) 748-2000

Puisqu'on prévoit une demande restreinte pour ce document de recherche, seul le résumé a été traduit.

La SCHL fera traduire le document si la demande le justifie.

Pour nous aider à déterminer si la demande justifie que ce rapport soit traduit en français, veuillez remplir la partie ci-dessous et la retourner à l'adresse suivante :

Centre canadien de documentation sur l'habitation Société canadienne d'hypothèques et de logement 700, chemin Montréal, bureau C1-200 Ottawa (Ontario) K1A 0P7

Titre du rapport: _		
Je préférerais que c	e rapport soit disponible en fr	ançais.
NOM		
ADRESSE		
rue		Арр.
ville	province	Code postal
No de téléphone ()	

INTRODUCTION

This research project is a first attempt to validate a method to measure the sound power levels generated by fans when they are connected to the ductwork of a ventilating system, and operating in real conditions. The project was funded by the CANADA MORTGAGE AND HOUSING CORPORATION; the measurement procedure which was originally presented to the CMHC appears in ANNEX I. The goal of the study was to determine the accuracy and limitations of the proposed method. To achieve this, the results of the measurements made according to the proposed procedure were compared with those obtained in a reverberant room using the method described in the AMCA 300 standard.

All the measurements were conducted in the acoustical laboratories of the NATIONAL RESEARCH COUNCIL OF CANADA under the direction of Dr. Alfred Warnock and the author. The results of all the measurements performed are presented in ANNEX II which has been prepared by Dr. Alfred Warnock. The observations, comments, and conclusions reached during this research project are summarized in the paragraphs below.

RESUMÉ OF THE PROPOSED MEASUREMENT PROCEDURE

The proposed procedure consists:

- a) in measuring the sound intensity inside and outside a section of duct located immediately after the fan discharge with a loudspeaker emitting pink noise at the position of the fan discharge. This is to perform a calibration of the field conditions and to take into account the sound transmission loss through the duct wall;
- b) in repeating the measurements outside the duct with the fan operating (refer to figure no. 1 in the report for a sketch showing the experimental installation);

MM

c) by comparing the levels measured with the fan and the reference loudspeaker it was assumed that one could deduce the sound power levels emitted by the fan with the equations appearing below:

Where:

SWL $_{fan}$ = field Sound Power Level generated by the fan at its discharge outlet (dB re: 10^{-12} Watt)

SWL $_{ref. in.}$ = average Sound Power Level calculated inside the duct with the reference source in operation.

(dB re: 10^{-12} Watt)

= SIL _{ref. in.} + 10 log S

Where:

SIL ref. in. = average Sound Intensity Level measured inside the duct using pink noise through a speaker as a reference source.

(dB re: 10^{-12} Watt/m²)

S = the cross-sectional area of the duct (m^2)

SIL fan. out. = average Sound Intensity Level measured outside the duct with the fan in operation (dB re: 10^{-12} Watt/m²)

SIL $_{ref. out.}$ = average Sound Intensity Level measured outside the duct using a loud speaker with pink noise as a reference source in operation (dB re: 10^{-12} Watt/m²)

NOISE SOURCES

The procedure tested requires that sound intensity measurements be made using first a loudspeaker emitting pink noise as a reference source. Many loudspeakers were tested until one was found that had a large enough output for a frequency range of 50 to 5000 Hz; the selected speaker was a JBL E110 250 mm mounted in an enclosure.

The fan used to test the procedure is a centrifugal fan with forward curve blades supplied by Mc QUAY; it is designed to deliver 942 l/s at a static pressure of 185 Pa. (2000 cfm @ 0.75 in. H_2O).

The small reverberation chamber was the room in which both noise sources were placed.

ANALYSIS OF THE MEASUREMENTS PERFORMED

Sound pressure levels measurements in the large reverberation chamber:

The sound power levels generated by the fan were first measured for static pressures of 50, 100, 150 and 200 Pa using the reverberant room method described in the AMCA 300 standard; figure no. 1 of ANNEX II shows the corresponding curves. One can note on this figure that the sound power levels measured are considerably lower than the levels submitted to us by the manufacturer which appear to be calculated using the method suggested by ASHRAE.

Min

Sound intensity measurement in the small reverberation chamber:

After the completion of the measurements as per the AMCA 300 procedure, tests were undertaken with the proposed method using intensimetry. For all the tests made with intensimetry, the fan was operating at a static pressure of 50 Pa.

It appeared logical that, in field conditions, the measurements be performed as close to the fan as possible (the procedure called for a distance of 600 mm between the sampling area and the fan discharge). In order to determine the effect of background noise on the sound intensity measurements, the first measurements were performed in the small reverberation chamber where the fan was installed and where the background noise was high.

Measurements were made inside and outside the discharge duct using the reference source: a loudspeaker emitting pink noise. Measurements were also conducted outside the duct with the fan running. In both cases the background noise in the small reverberation chamber was important enough to interfere with the measurements. Attempts have been made to improve the reliability of the data collected in the small reverberation chamber. The NRC staff tried to increase the absorption in the small reverberation chamber and to shield the sampling area on the duct using acoustic barriers: these attempts were not successful.

The complete results of the measurements made in the small reverberation chamber appear in ANNEX II. These results highlighted the limitations of intensimetry when used in high background noise conditions.

Sound intensity measurements in the large reverberant chamber:

Intensity measurements were then performed in the large reverberation chamber where the background noise was relatively low (it is this configuration which was originally submitted in the proposal to the CMHC).

Even in these conditions, the results of the sound intensity measurements performed inside and outside the duct were not reliable at all frequencies. The non reliable results were those for which the intensity level measured was negative, or for which the phase error indicator (PEI) was less than 7 dB. The complete results of the measurements performed in the large reverberation chamber are presented and discussed in ANNEX II of this report.

Determination of the sound power levels using the sound intensity measurements

The sound power levels of the fan were determined using the valid third-octave band intensity measurements made from 50 Hz to 5000 Hz: 31 on a total of 42. These levels are plotted on attached graph no.1 along with the sound power levels obtained by the AMCA 300 procedure. As can be seen on graph no. 1, with the exception of the sound power levels based on the sound intensity measurements made on the vertical surface of the discharge duct for third-octave band no. 29, 30, 31 and 33, the results obtained with the proposed procedure agree within 7 dB with the levels obtained with the AMCA procedure.

CONCLUSIONS

A) When the sound intensity measurements were made in the low background noise conditions of the large reverberant chamber, the results of 31 third-octave band sound intensity measurements over a total of 42 performed, were reliable. The non

MiM

reliable results were those for which the intensity level measured was negative, or for which the phase error indicator (PEI) was less than 7 dB.

The SWL determined by the proposed procedure correlate fairly well with the SWL obtained using the reverberant chamber method described in the AMCA 300 procedure for the frequency range going from 50 Hz to 800 Hz with discrepancies inferior to 4 dB except for the 50 Hz band for which a discrepancy of 7 dB was noted.

For frequencies higher than 800 Hz however, the discrepancies are larger, especially when using the SIL measured on the vertical surface of the discharge duct for third-octave band frequencies ranging from 800 Hz to 2000 Hz.

For the vast majority of ventilating systems, the 50 Hz to 500 Hz frequency range governs the noise control design. The very limited tests results suggest that given a low background noise the proposed method could be reliable in this range. This would have to be confirmed by further testing involving a large number of tests on different duct sizes.

B) It was hoped that the method proposed would be relatively simple to implement and that it could provide an economical way to measure the sound power levels of fans operating in a multitude of field conditions. It was also thought that the intensimetry technology would permit measurements in noisy environment as publicized in the literature of some manufacturers of these equipments.

In reality however the limitations imposed by intensimetry made the procedure difficult to use in an acoustical environment similar to that of a mechanical room, and unreliable due to the high number of non valid measurements.

<u>177.901</u> 6 <u>1991 08</u>

This suggests that in field conditions, reliable measurements could not be made in mechanical rooms where the ambient noise level is generally high. The measurements would therefore have to be made outside the mechanical room. Since in many instances the silencers and other noise control devices are installed inside the mechanical room or immediately before or after the mechanical room wall or floor, it would not be possible to evaluate accurately the sound power levels of the fan without major modifications to the ventilating system. This defeats the purpose of the proposed method: to permit reasonably accurate field measurements of sound power levels generated at the discharge of ventilating equipments when they are installed and operational.

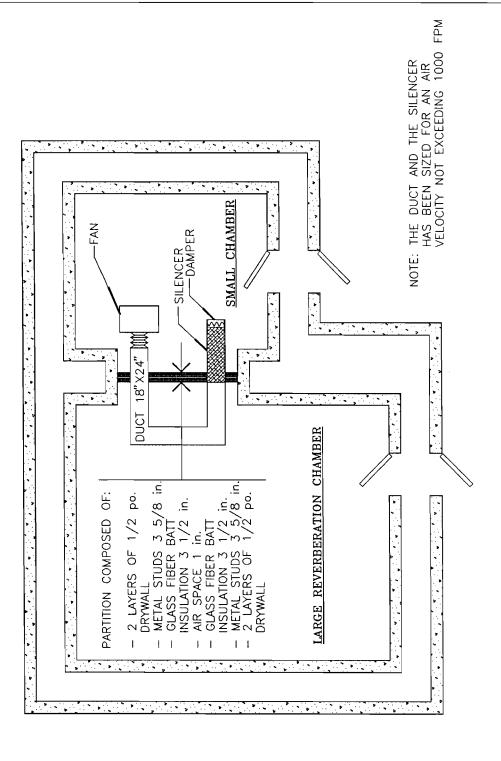
In conclusion progress must be made to allow for accurate intensity measurements in noisy environment before the proposed method be further developed for reliability.

Respectfully submitted on September, 24 1991

Yours very truly,

MJM ACOUSTICAL CONSULTANTS INC.

Lui we lows


Michel Morin, architect

President

MM/dp

encl. Figure 1

Graph 1

EXPERIMENTAL LAYOUT - PLAN

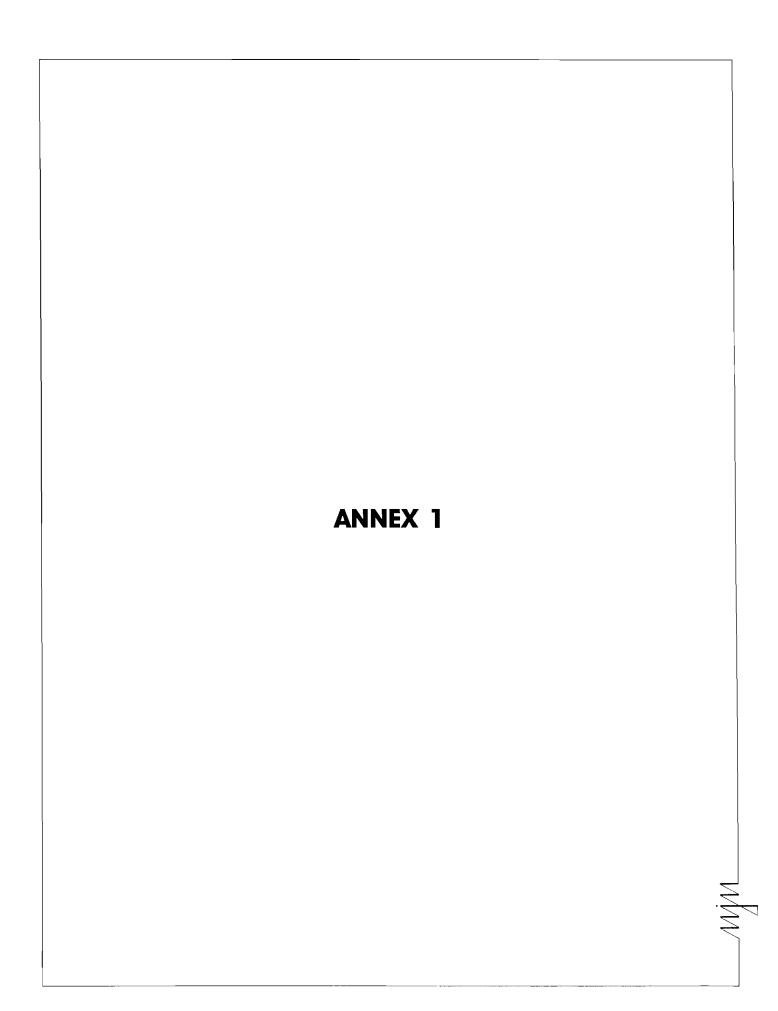

PROJET 177.901 177901C

FIGURE 1

91 08

<u>M</u>:

SOUND PRESSURE VALUES Sound power levels calculated using the method described in the present procedure and the sound intensity measurements made over the SOUND POWER LEVELS OF THE FAN OBTAINED IN REVERBERANT ROOM USING THE AMCA 300 PROCEDURE SOUND POWER MEASUREMENT FOR FANS IN FIELD CONDITIONS HORIZONTAL surface of the the 08 DATE 91 VERTICAL surface of COMPARISON BETWEEN AND SOUND INTENSITY discharge duct discharge duct GRAPH NUMBER PROJECT DESCRIPTION PROJECT NUMBER GRAPH TITLE 177.901 LEGEND **♦** 1 REPRESENT A COMPLETE REPORT 8000 2000 FREQUENCY IN HERTZ 1000 NOTE: THIS GRAPH ALONE DOES NOT 125 BAND No. 90 80 20 9 50 40 30 20 (RE 2 x 10.4 Pa) SOUND PRESSURE LEVEL (dB)

A RESEARCH PROJECT TO PROPOSE AND VALIDATE A METHOD TO MEASURE THE SOUND POWER LEVELS GENERATED BY FANS IN FIELD CONDITIONS

Michel Morin

Architecte

MJM CONSEILLERS EN ACOUSTIQUE INC.

MJM ACOUSTICAL CONSULTANTS INC.

6555, Côte des Neiges, bureau 440

Montréal, Québec H3S 2A6

INTRODUCTION

The purpose of this research project is to propose and validate a method to permit reasonably accurate field measurements of sound power levels generated at the discharge of ventilating equipements when they are installed and operational. The method is based on the measurement of the sound intensity radiated through a portion of the duct wich is located immediately after the fan discharge. The advantage of this method, as opposed to in-duct measurements, is that it rules out the potential for noise generation by the flow of air around the microphones. In order to make accurate measurements, the field conditions are first calibated to take into account the transmission loss through the discharge duct wall. Once this calibration is performed, the fan is turned on, and the generated noise levels are compared to those obtained during the calibration. The octave band sound power levels produced by the fan in the field can then be obtained.

PROCEDURE

Refer to <u>figure no 1</u> for the laboratory sep up required to perform the validation of the procedure described below.

1.0 CALIBRATION OF THE FIELD CONDITIONS

- 1.1 Turn the fan off.
- 1.2 In the air inlet plenum, install a stable reference pink noise source, such as that used to measure the transmission loss through partitions. If there is no inlet plenum, a speaker could be inserted in the fan inlet. In both cases, the structural transmission of vibrations to the casing of the fan must be avoided.
- 1.3 Select a measurement location along the discharge duct at approximately 600 mm from the fan discharge.
- 1.4 Make a slot opening in the duct wall to allow for easy insertion of the sound intensity probe inside the duct.
- 1.5 With the reference source power on, measure the in-duct sound intensity by moving the probe to scan the entire duct cross sectional area. These measurements will provide the Sound Intensity Level inside the duct with the reference source in operation (SIL ref. in.); they should be performed for octave bands no.1 to 8.
- 1.6 Using the cross-sectional area of the duct, calculate the Sound Power Level inside the duct with the reference source in operation (SWL ref. in.) for each octave band, using the formula:

90 02 16

 $SWL_{ref. in.} = SIL_{ref. in.} + 10 log S$

Where:

 $SIL_{ref. in.}$ = average sound intensity level measured inside the duct as described in item 1.5 above.

S = the cross-sectional area of the duct

- 1.7 Cover the slot opening made for the in-duct measurements, using sheet metal and duct seal tape.
- 1.8 With the reference source on, perform outside duct measurements by moving the probe to scan the shaded area shown in <u>figure 1</u>. This area should start at approximately 600 mm from the fan discharge, continues for a length of 500 mm, and is at distance of 50 mm from the exterior of the duct wall. The obtained measurements will provide the Sound Intensity Level outside the duct with the reference source in operation (SIL _{ref. out.}), and they will be used to establish a relation between the sound intensities measured outside and inside the duct. This relation (cf. item 2.4) will be used to determine the sound power generated in the discharge duct with the fan in operation.

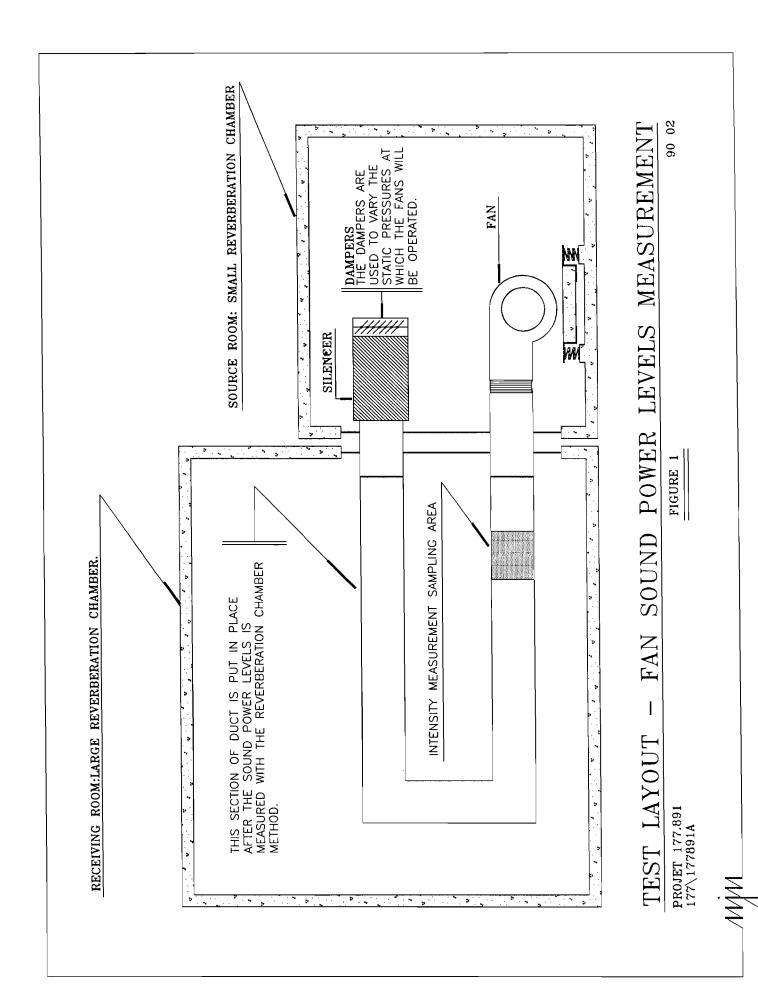
2.0 MEASUREMENT OF THE FAN SOUND POWER LEVELS

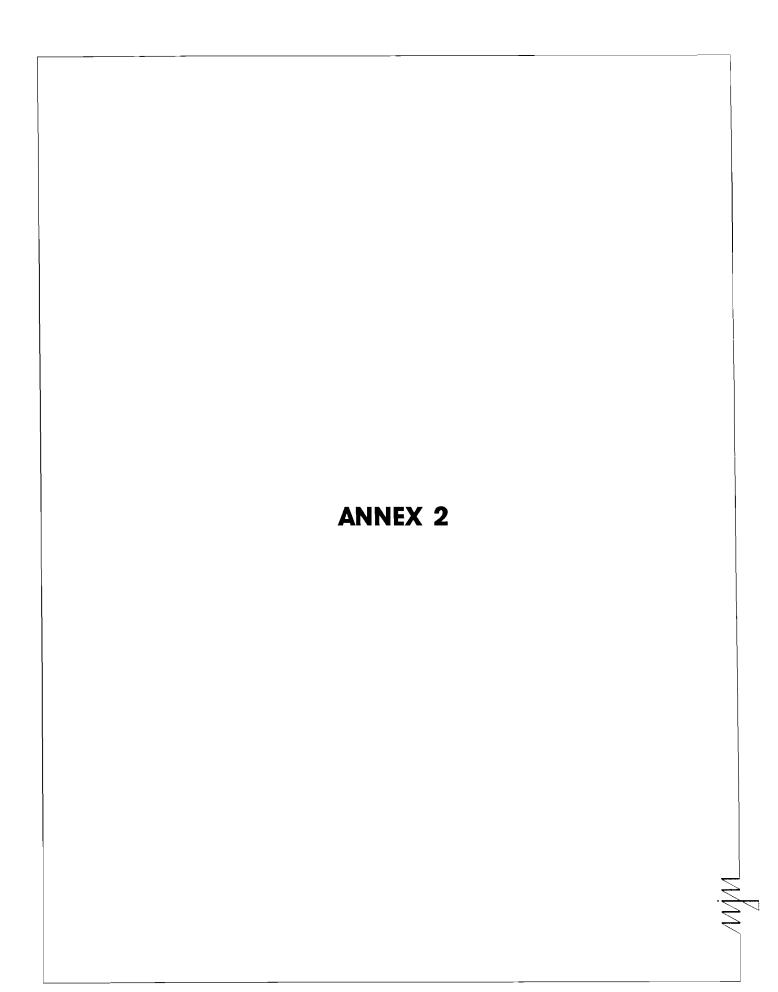
- 2.1 Remove the reference sound source from the air inlet of the fan.
- 2.2 Turn the fan on and allow the system to operate at normal conditions.
- 2.3 Measure the sound intensity radiated from the duct wall as described in item 1.8 above, in order to obtain the Sound Intensity Level outside the duct with the fan in operation (SIL $_{fan\ out}$).

MiM

2.4 Calculate the Sound Power Levels (SWL fan) produced by the fan, using the following equation:

Where:


$$SWL_{fan}$$
 = field sound power levels generated by the fan at its discharge outlet


$$SIL_{fan. out.}$$
 = average intensity level measured outside the duct with the fan in operation

$$SIL_{ref. out.}$$
 = average sound intensity level measured outside the duct with the reference souce in operation

PRECISION OF THE MEASUREMENTS

It is the goal of this study to establish the precision of the measurements obtained using this procedure and to compare it with the AMCA 300 procedure for determination of the sound power level generated by ventilating fans in laboratory conditions.

SUMMARY OF INVESTIGATION OF EXPERIMENTAL TECHNIQUE TO MEASURE FAN SOUND POWER IN SITU.

The purpose of these measurements has been described in the research proposal submitted to CMHC. This report intends only to present the data together with some interpretation where necessary.

CONSTRUCTION.

A filler wall was constructed in the sound transmission loss test opening. A section of duct was installed at one side of the wall and a silencer at the other. (See Fig. 1) The fan supplied by MJM was attached to the section of duct using a short transition section and a vibration isolator.

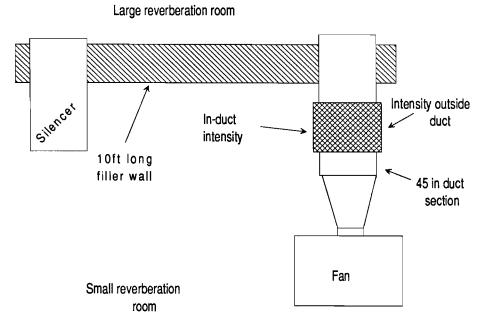


Figure 1: Arrangement of fan and duct sections for measurement of sound power in large reverberation room

STANDARD SOUND POWER MEASUREMENTS IN REVERBERATION ROOM

The output sound power of the fan was measured according to ANSI S12.31 at four static pressures: 50, 100, 150, and 200 Pa. This test procedure is essentially the same as the AMCA 300 procedure. Static pressure was changed by reducing the size of the opening into the small reverberation room of the silencer shown in Figure 1. Figure 2 shows the measured sound power values and the octave band values provided by the manufacturer. The latter clearly come from calculations made in accordance with ASHRAE algorithms. The data are tabulated in Table 1.

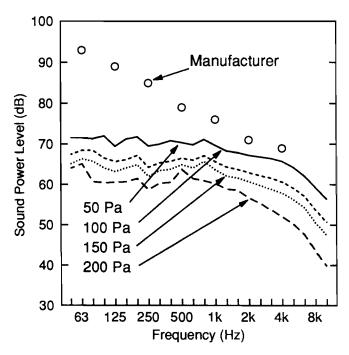


Figure 2: Sound power measured in reverberation room for four values of static pressure.

SOUND INTENSITY MEASUREMENTS.

TRIAL MEASUREMENTS

Trial measurements were made to see if it was possible to make sound intensity measurements in the small reverberation room where the fan was located. The sound source used was the fan itself. There was no restriction of the flow through the system. These measurements were made by sweeping the probe over two exterior surfaces of the duct - one horizontal and one vertical. Two kinds of

probes were used: the NE216 pressure-velocity probe and the B&K pressure-pressure or two-microphone probe. With the NE216 probe, it is good practice to measure twice, with the probe axis normal to the duct surface and pointing at it and with it pointing away from it -- forward and reversed orientation. If the measurement is valid, the two results will differ only in sign. Unfortunately, if there is a change in sign only, it does not necessarily mean that the measurement is useful. The intensity vector may have many unwanted components.

Figure 3 shows the NE216 results for the horizontal duct surface. Figure 4 shows the results for the vertical duct surface. In each case the probe was held 75 mm away from the duct surface. The data for the case where the probe axis was reversed were multiplied by -1 to keep the plots together. Raw and processed data are given in Tables 2 and 3.

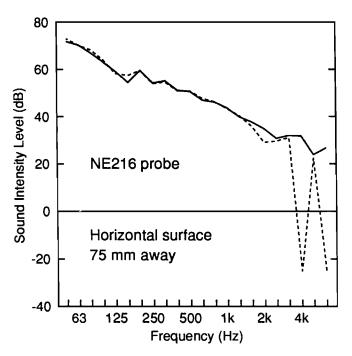


Figure 3: NE216 p-v probe data for the horizontal duct surface. Measurements in the small reverberation room with the probe axis pointing forward and reversed (solid and dashed lines).

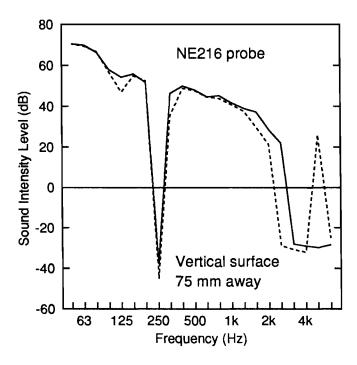


Figure 4: NE216 p-v probe data for the vertical duct surface.

Measurements in the small reverberation room with the probe axis pointing forward and reversed (solid and dashed lines).

As the figures show, the top surface measurement appears to work except at high frequencies. The vertical surface measurement has a suspicious negative value at 250 Hz and the high frequency results are clearly not valid. Other measurements were made with the probes held about 15 cm away from the duct surfaces. These gave poorer results and are not plotted although they are given in tables at the end of this report. In these measurements and all those that follow, when suspicious negative intensities were measured or when the measurement appeared invalid, repeat measurements were made to ensure that no error had been made. In all cases, the repeatability was good.

The difficulty with the pressure-velocity probe is that there is no simple way of determining whether measurements are valid. This is very problematic when the sound fields are highly reactive or there is extraneous noise. Despite the fact that sound absorbing material and shielding were used to protect the measurement area from noise in the room, the measurements could not be shown to be reliable. Accordingly, the B&K two-microphone system was used in subsequent measurements.

A major advantage of the B&K probe system in situations where sound fields are reactive and there is external noise is that the assembly can be calibrated and the noise floor determined. This was done in this case using a B&K intensity calibrator type 3541.

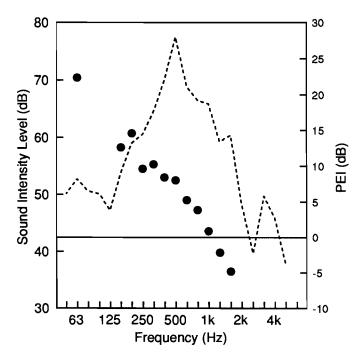


Figure 5: B&K p-p probe data for the horizontal duct surface.

Measurements in the small reverberation room with the fan as the noise source.

Figure 5 shows the data for the horizontal surface. This plot and all subsequent similar plots, combine data from a sweep with a probe separation of 50 mm and one of 12 mm. Below 500 Hz, the data from the 50 mm probe were used. Above 500 Hz, the data from the 12 mm probe were used. From the calibration procedure and from the measurements, a phase error indicator (PEI) curve is obtained. This is shown as the dotted line in the figure. The right hand axis should be used for this curve. When PEI is less than 7 dB, errors in the measurement of intensity are considered too large. In such cases, the one-third-octave band levels are not plotted.

Note that it might be possible to use a more complicated procedure for combining the data from the 50 mm and 12 mm measurements. The raw data are available in the tables at the end of the report if such processing is deemed necessary.

Figure 5 shows that, for the horizontal surface, measurements are only valid at 63 Hz and between 160 and 1600 Hz. Figure 6 for the vertical surface shows two large gaps where the data is not reliable. Note that there is no large negative value of intensity at 250 Hz as there was with the NE216 probe. Raw and processed data for these two figures are given in Tables 2 and 3.



Figure 6: B&K p-p probe data for the vertical duct surface. Measurements in the small reverberation room with the fan as the noise source.

MEASUREMENTS WITH SPEAKER SOURCE IN SMALL REVERBERATION ROOM

The proposed measurement procedure requires that a loudspeaker be put in place of the fan. The sound power in the duct and that passing through the duct walls is then measured. Several speakers were tried before one was found that had a large enough output at all frequencies. The speaker that was finally chosen was a JBL E110 250 mm musical instrument loudspeaker. It was mounted in an enclosure measuring 33 x 48 x 61 cm. Figures 7 and 8 show the intensity values measured on the outside of the duct. It is clear that, while the measured values are valid, they do not represent the energy flow through the duct wall from inside to outside only. They are instead a combination of sound flow into the duct from the room and sound flow out of the duct. In this case the sound flow into the duct

predominates at high frequencies but is not necessarily negligible at other frequencies. Thus the resultant vector points into the duct at high frequencies.

The measurements are also complicated by the fact that the sweep surface does not completely enclose the duct (the noise source). Ideally, this should be done to eliminate the effects of external noise. Even if this is done, errors can still be large in noisy environments.

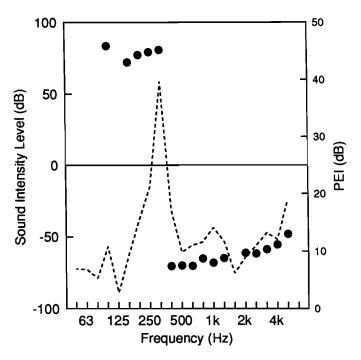


Figure 7: Intensity measurements in the small reverberation room on the horizontal surface of the duct. The loudspeaker was the source.

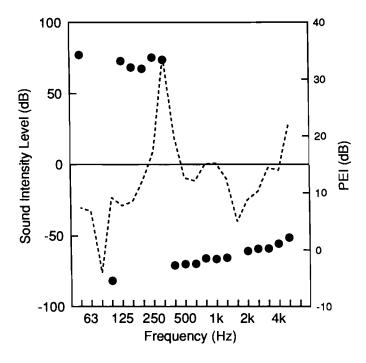


Figure 8: Intensity measurements in the small reverberation room on the vertical surface of the duct. The loudspeaker was the source.

MEASUREMENTS IN THE LARGE REVERBERATION ROOM

On the basis of the results presented above, it was decided that there was no point in continuing with measurements of sound intensity in the small reverberation room where the noise sources were. Instead, additional duct sections were added in the large reverberation room as shown in Figure 9. This is the configuration originally suggested by MJM. As in the small room, the measurement region was shielded and sound absorbing material was added to the room to reduce the reverberant sound field. In the large reverberation room, the only source of sound is the duct surface. This makes measurement easier in principle but this is offset by the fact that the room is more reverberant even with sound absorbing material added in the room.

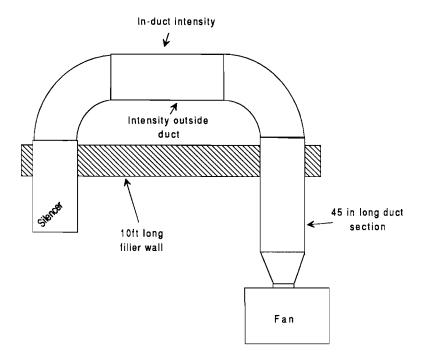


Figure 9: Arrangement of ductwork when sound intensity measurements were made in the large reverberation room.

INTENSITY MEASUREMENTS INSIDE THE DUCT - SPEAKER SOURCE.

Because of space restrictions, it was not possible to use the sweeping technique inside the duct. Instead, measurements were made at 9 fixed positions of the probe. To make these measurements, a slot was cut in the side of the duct. Even in this environment, some of the measured values were not reliable. The probes were probably close to a node in such cases. The mean intensity and the range in the data are shown in Figure 10. There are fairly large differences among the data measured at different points. Tabulated values are given at the end of the report.

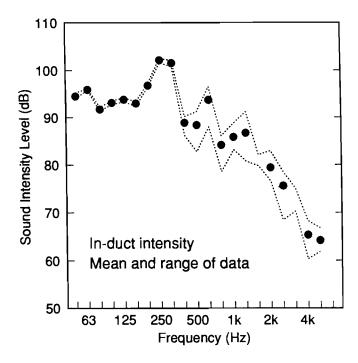


Figure 10: Mean value and range of sound intensity inside the duct for measurements at nine positions. The noise source is the loudspeaker.

INTENSITY MEASUREMENTS OUTSIDE THE DUCT - SPEAKER SOURCE

Measurements of sound intensity outside the duct due to the speaker source were made in the large reverberation room. The results are shown in Figures 11 and 12. The negative value of intensity at 350 Hz was repeatable and is attributed to some duct panel resonance influencing the sound field. To investigate this further would have required a great deal of detailed intensity measurements. This was not possible with the project budget and in any case it was not part of the aim of the project. It is important to know that such negative values can occur. Why they occur is not so important for this project.

INTENSITY MEASUREMENTS OUTSIDE THE DUCT - FAN SOURCE

Figure 13 shows the data for the horizontal duct surface and Fig. 14 shows the data for the vertical duct surface. There are only a few missing data points in Fig. 13. The data in Figure 14 can be relied on over almost the whole frequency range; only one point at 1600 Hz is doubtful.

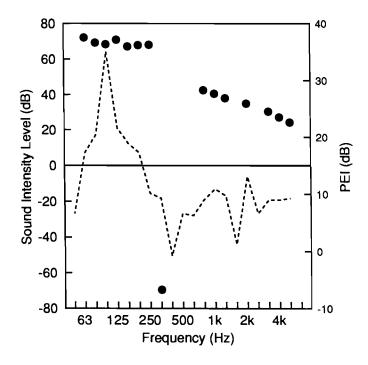


Figure 11: Sound intensity measured in the large reverberation room over the horizontal duct surface. The noise source is the loudspeaker.

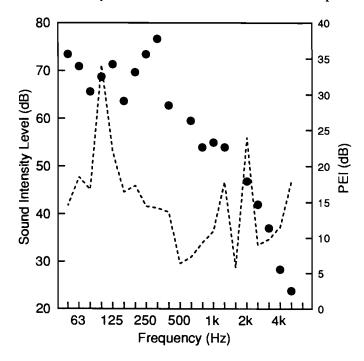


Figure 12: Sound intensity measured in the large reverberation room over the vertical duct surface. The noise source is the loudspeaker.

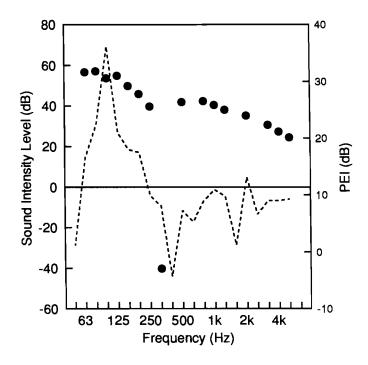


Figure 13: Intensity measurements in the large reverberation room over the horizontal duct surface. The noise source is the fan running unobstructed.

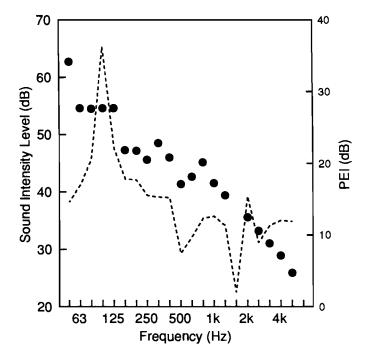


Figure 14: Intensity measurements in the large reverberation room over the vertical duct surface. The noise source is the fan running unobstructed.

Table 1: Fan sound power measured in reverberation room according to ANSI S12.31.

Test Number and Static Pressure				Fre	equency	(Hz)					
50 63	80	100	125	160	200	250	315	400	500	630	800
PO-91-043, 50 Pa	•			100	-00		515		200	050	000
71.5 71.5	71.3	72.0	69.4	71.2	71.8	69.5	70.0	70.8	70.4	69.8	71.1
PO-91-044, 100 Pa											
67.4 68.4	68.4	66.6	65.6	66.1	67.2	64.2	65.3	65.7	66.5	66.0	67.1
PO-91-045, 150 Pa 65.1 66.3	65.7	(1.1	(2.1	(11	<i>(</i> 10	(0.0	(2.4	(2.0			65.7
PO-91-046, 200 Pa	65.7	64.1	63.1	64.1	64.9	62.0	63.4	63.8	64.9	64.1	65.7
64.0 65.1	60.7	60.4	60.5	60.7	61.4	58.7	60.3	60.5	63.7	61.4	60.9
			Fr	eauenc	y (Hz)						
				1	J ()						
1000 1250	1600	2000	2500	3150	4000	5000	6300	8000	10k	Awt	
PO-91-043, 50 Pa											
69.7 68.3	67.9	67.2	66.8	66.4	65.7	64.2	62.1	59.3	56.4	79.3	
PO-91-044, 100 Pa	(2.7	<i>(</i> 2.0	60.0			50. 1	<i></i> -	50 0	50. 5	55.0	
65.6 64.3 PO-91-045, 150 Pa	63.7	62.9	62.2	61.5	60.6	59.1	57.1	53.8	50.7	75.0	
63.6 62.1	61.6	60.7	50.7	58.8	57.0	56.3	5/1/3	50.6	17.5	72 0	
63.6 62.1 PO-91-046, 200 Pa	61.6	60.7	59.7	58.8	57.9	56.3	54.3	50.6	47.5	72.9	
63.6 62.1 PO-91-046, 200 Pa 60.2 58.9	61.6 58.6	60.7 56.7	59.7 55.4		57.9 52.1	56.3 50.3	54.3 47.6	50.6 43.6	47.5 39.8	72.9 69.4	

125	250	500	1000	2000	4000	8000	Awt
75.7	75.3	75.1	74.6	72.1	70.3	64.7	79.3
67.7	65.3	59.4	75.0	72.8	70.9	70.5	70.8
(F. F							
65.5	62.5	36.4	72.9	70.5	68.6	68.4	69.1
61.9	57.0	49.6	69.4	68.4	65.3	65.0	66.9
89	85	79	76	71	69		82
	75.7 67.7 65.5 61.9 for 2000cfm	75.7 75.3 67.7 65.3 65.5 62.5 61.9 57.0 for 2000cfm 3/4" water	75.7 75.3 75.1 67.7 65.3 59.4 65.5 62.5 56.4 61.9 57.0 49.6 for 2000cfm 3/4" water	75.7 75.3 75.1 74.6 67.7 65.3 59.4 75.0 65.5 62.5 56.4 72.9 61.9 57.0 49.6 69.4 for 2000cfm 3/4" water	75.7 75.3 75.1 74.6 72.1 67.7 65.3 59.4 75.0 72.8 65.5 62.5 56.4 72.9 70.5 61.9 57.0 49.6 69.4 68.4 for 2000cfm 3/4" water	75.7 75.3 75.1 74.6 72.1 70.3 67.7 65.3 59.4 75.0 72.8 70.9 65.5 62.5 56.4 72.9 70.5 68.6 61.9 57.0 49.6 69.4 68.4 65.3 for 2000cfm 3/4" water	75.7 75.3 75.1 74.6 72.1 70.3 64.7 67.7 65.3 59.4 75.0 72.8 70.9 70.5 65.5 62.5 56.4 72.9 70.5 68.6 68.4 61.9 57.0 49.6 69.4 68.4 65.3 65.0 for 2000cfm 3/4" water

Table 2: Sound intensity measurements in small reverberation room. Fan source - Full Flow.

NE pre	essure-vel			100	125	160	200	250		quency		630	800
#1 Hor	50 rizontal Si	63 urface 3	80 " Awav			100	200	230	315	400	500	030	800
Ieq	71.8	70.3	66.8	63.1	59.0		59.5	54.2	55.1	51.0	50.6	46.9	46.1
Leq	76.6	73.7	74.1	72.6	69.5		69.5	64.1	64.3	61.3	59.3	55.1	54.6
Lk #2 Ho	4.9 rizontal S	3.4	7.3	9.5	10.4	14.3	10.0	9.8	9.1	10.3	8.7	8.1	8.4
Ieq	-73.0	-70.2	-68.2	-63.9	-58.2	-57.4	-59.6	-53.9	-54.6	-50.9	-50.8	-47.5	-46.2
Leq	76.3	73.6	74.1	72.1	69.1	68.2	69.2	63.7	63.8	61.0	59.1	55.0	55.2
Lk _	3.3	3.3	5.9	_ 8.2	10.9	10.9	9.6	9.8	9.2	10.1	8.3	7.5	9.1
	rizontal S					50.0	£0.0	50 F	5 A C	50 6	500	46.7	45.0
Ieq Leq	71.4 75.5	69.1 73.2	65.3 73.8	63.0 72.0	54.6 68.6		59.2 68.8	52.5 63.1	54.6 62.4	50.6 59.4	50.0 57.3	46.7 53.9	45.2 54.4
Lk	4.1	4.1	8.5	9.0	14.1	14.5	9.6	10.5	7.8	8.8	7.3	7.2	9.2
#4 Ho	rizontal S	urface 6	5" Away										
Ieq	-71.3	-68.8	-66.3	-62.7		-55.2	-58.1	-53.3	-54.4	-50.0	-50.2	-46.6	-44.8
Leq	75.1 3.8	73.0	73.5	71.5	68.4		68.2	63.0	62.4	59.3	57.4	53.7	54.5
Lk #5 Ve	o.o. rtical Surl	4.1 face 3" <i>i</i>	7.2 Away - 1	8.8 Forward	12.4	11.8	10.2	9.7	8.0	9.3	7.2	7.1	9.8
Ieq	70.6	69.9	66.4	58.0	54.2	55.9	51.7	-37.8	46.3	49.9	48.1	44.6	45.3
Leq	75.5	74.1	72.5	70.2	65.8	68.2	64.9	63.3	62.5	58.8	56.5	53.3	55.1
Lk	4.9	4.2	6.1	12.2	11.5	12.3	13.2	25.5	16.2	8.9	8.4	8.8	9.9
	rtical Surf				46.0	540	E0 E	45.0	25.5	40.0	47.7	44.4	42.0
Ieq Leq	-70.5 75.5	-69.5 74.4	-66.7 72.5	-56.8 70.1	-46.9 65.6	-54.9 68.3	-52.5 64.9	45.0 63.5	-35.5 62.9	-48.8 58.6	-47.7 56.5	-44.4 53.1	-43.8 55.4
Lk	5.0	4.9	5.8	13.3	18.8		12.4	18.4	27.4	9.8	8.8	8.7	11.6
	rtical Sur	face 6" A	Away - 1	Forward						,	0.0	0	11.0
Ieq	69.0	68.0	65.2	54.6	53.9		50.4	-47.4	42.0	49.0	46.5	43.6	44.0
Leq	74.4	73.6	71.8	69.5	65.6		63.9	62.7	61.9	58.0	55.4	51.9	55.0
Lk #8 Va	5.4 rtical Sur	5.6 face 6"	6.6	14.8	11.7	12.8	13.6	15.3	19.8	9.0	8.9	8.3	11.0
Ieq	-70.2	-69.2	-66.2	-51.7		-53.3	-49.3	49.2	38.1	-48.3	-46.9	-42.8	-43.4
Leq	75.1	73.9	72.2										
		13.7	12.2	69.9	65.9	68.0	64.4	62.8	61.9	57.6	55.3	51.8	55.2
Lk	4.9	4.7	6.0	18.2	14.7		15.0	13.5	23.8	9.3	55.3 8.4	51.8 8.9	55.2 11.9
							15.0	13.5	23.8		_	_	
	4.9	4.7	6.0	18.2	14.7	14.7	15.0 Fre	13.5 equency	23.8 (Hz)	9.3	8.4	8.9	
Lk	4.9	4.7 1000	6.0 1250	18.2	14.7 2000	14.7	15.0 Fre	13.5 equency	23.8		_	_	
Lk #1 Ho	4.9	4.7 1000 Surface 3 43.7	6.0 1250 3" Away 39.9	18.2 1600 7 - Forwar 37.7	14.7 2000 rd 34.8	14.7 2500 30.8	15.0 Fro 3150 32.0	13.5 equency 4000 31.7	23.8 (Hz) 5000 23.8	9.3 6300 26.7	8.4 Awt 56.9	8.9	
#1 Ho Ieq Leq	4.9	4.7 1000 Surface 3 43.7 55.3	6.0 1250 3" Away 39.9 52.3	18.2 1600 7 - Forwar 37.7 52.4	14.7 2000 rd 34.8 54.5	14.7 2500 30.8 53.9	15.0 Fre 3150 32.0 54.8	13.5 equency 4000 31.7 55.5	23.8 (Hz) 5000 23.8 55.9	9.3 6300 26.7 56.7	8.4 Awt 56.9 68.4	8.9 Lin 75.3 81.6	
#1 Ho leq Leq Lk	4.9 orizontal S	4.7 1000 Surface 3 43.7 55.3 11.6	6.0 1250 3" Away 39.9 52.3 12.4	1600 7 - Forwar 37.7 52.4 14.7	14.7 2000 rd 34.8 54.5 19.6	14.7 2500 30.8 53.9	15.0 Fro 3150 32.0	13.5 equency 4000 31.7	23.8 (Hz) 5000 23.8	9.3 6300 26.7	8.4 Awt 56.9	8.9 Lin 75.3	
#1 Ho leq Leq Lk #2 Ho	4.9	4.7 1000 Surface 3 43.7 55.3 11.6 Surface 3	6.0 1250 3" Away 39.9 52.3 12.4 3" Away	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers	14.7 2000 rd 34.8 54.5 19.6	14.7 2500 30.8 53.9 23.1	15.0 Fro 3150 32.0 54.8 22.7	13.5 equency 4000 31.7 55.5 23.7	23.8 (Hz) 5000 23.8 55.9 32.1	9.3 6300 26.7 56.7 30.0	8.4 Awt 56.9 68.4 11.4	8.9 Lin 75.3 81.6 6.3	
#1 Ho leq Leq Lk	4.9 orizontal S	4.7 1000 Surface 3 43.7 55.3 11.6	6.0 1250 3" Away 39.9 52.3 12.4	1600 7 - Forwar 37.7 52.4 14.7	14.7 2000 rd 34.8 54.5 19.6	14.7 2500 30.8 53.9 23.1 -29.6	15.0 Fre 3150 32.0 54.8	13.5 equency 4000 31.7 55.5	23.8 (Hz) 5000 23.8 55.9	9.3 6300 26.7 56.7	8.4 Awt 56.9 68.4	8.9 Lin 75.3 81.6	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk	4.9 rizontal S	4.7 Surface 3 43.7 55.3 11.6 Surface 3 -43.5 54.5 11.0	6.0 1250 3" Away 39.9 52.3 12.4 3" Away -40.3 52.4 12.1	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3	14.7 2500 30.8 53.9 23.1 -29.6 54.3	15.0 Fro 3150 32.0 54.8 22.7 -31.1	13.5 equency 4000 31.7 55.5 23.7 25.1	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4	9.3 6300 26.7 56.7 30.0 25.6	8.4 Awt 56.9 68.4 11.4 -57.1	8.9 Lin 75.3 81.6 6.3	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho	4.9 orizontal S	4.7 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6	6.0 1250 3" Away 39.9 52.3 12.4 3" Away -40.3 52.4 12.1 5" Away	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7	15.0 Fr 3150 32.0 54.8 22.7 -31.1 54.2 23.1	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Leq Lk	4.9 rizontal S	4.7 Surface 3 43.7 55.3 11.6 Surface 3 -43.5 11.0 Surface 6 42.4	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Leq Leq Lk #3 Ho Ieq Leq Leq Leq	4.9 crizontal S crizontal S	4.7 1000 Surface 3 43.7 55.3 11.6 5urface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8	14.7 2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0	15.0 Fro 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Leq Leq Lk #3 Ho Ieq Leq Leq Leq	4.9 crizontal S crizontal S	4.7 1000 Surface 3 43.7 55.3 11.6 5urface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers	14.7 2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho Ieq Leq Leq Leq Leq	4.9 rizontal S	4.7 1000 3 5urface 3 43.7 55.3 11.6 5urface 3 43.5 54.5 11.0 5urface 6 42.4 53.6 11.2 5urface 6 41.4	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers -35.7	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho Ieq Leq Lk #4 Ho Ieq Leq Lk	4.9 crizontal S crizontal S	4.7 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2 Surface 6 42.4 53.6 14.5	6.0 1250 3" Away 39.9 52.3 12.4 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 13.9 5" Away	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers -35.7 55.3	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3 54.7	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 80.5	
#1 Ho Ieq Leq Lk #2 Ho Ieq Lk #3 Ho Ieq Leq Lk #4 Ho Ieq Lk	4.9 prizontal S prizontal S prizontal S prizontal S	4.7 1000 Surface 3 43.7 55.3 11.6 50rface 3 -43.5 54.5 11.0 50rface 6 42.4 53.6 11.2 50rface 6 41.4 52.9 11.5	6.0 1250 3" Away 39.9 52.3 12.4 3" Away -40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 14.1	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5	
#1 Ho Ieq Leq Lk #2 Ho Ieq Lk #3 Ho Ieq Leq Lk #4 Ho Ieq Leq Lk #5 Ve	4.9 crizontal S crizontal S	4.7 1000 Surface 3 43.7 55.3 11.6 50rface 3 -43.5 54.5 11.0 50rface 6 42.4 53.6 11.2 50rface 6 41.4 52.9 11.5	6.0 1250 3" Away 39.9 52.3 12.4 3" Away -40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 14.1	18.2 1600 7 - Forward 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forward 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2	14.7 2000 and 34.8 54.5 19.6 ed -29.0 54.3 25.3 and 34.7 54.4 19.7 ed -33.3 54.7 21.4	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1	15.0 Fro 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 80.5 6.0	
#1 Ho Ieq Lk #2 Ho Ieq Lk #3 Ho Ieq Lk #4 Ho Ieq Lk #4 Ho Ieq Lk #5 Ve	4.9 prizontal S prizontal S prizontal S prizontal S	4.7 1000 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2 Surface 6 41.4 52.9 41.6 51.8	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 14.1 Away -1 38.9 51.6	18.2 1600 7 - Forward 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forward 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2 54.6	14.7 2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3 54.7 21.4	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0 56.2	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0 56.4	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8 56.9	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9 -28.3 57.6	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8 67.7	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 80.5 6.0 74.2 80.3	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho Ieq Lk #4 Ho Ieq Lk #5 Ve Ieq Leq Lk	4.9 crizontal S crizontal S crizontal S crizontal S	4.7 1000 3 3urface 3 43.7 55.3 11.6 3urface 3 43.5 54.5 11.0 3urface 6 42.4 53.6 11.2 3urface 6 41.4 52.9 11.5 face 3" 41.8 10.2	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 14.1 Away -] 38.9 51.6 12.7	18.2 1600 7 - Forward 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forward 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2 54.6 17.4	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3 54.7 21.4 28.4 53.5	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 29.9 -28.3	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 6.0 74.2	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho Ieq Leq Lk #4 Ho Ieq Leq Lk #5 Ve Ieq Leq Lk #6 Ve	4.9 prizontal S prizontal S prizontal S prizontal S	4.7 1000 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2 Surface 6 41.4 52.9 11.5 face 3" 41.6 51.8 10.2 face 3"	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 14.1 Away -] 38.9 51.6 12.7 Away -]	18.2 1600 7 - Forward 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forward 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2 54.6 17.4 Reversed	14.7 2000 rd 34.8 54.5 19.6 -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3 54.7 21.4 28.4 53.5 25.1	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0 33.3	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0 56.2 28.2	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0 56.4 27.5	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8 56.9 27.1	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9 -28.3 57.6 29.3	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8 67.7 13.9	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.3 -74.5 80.5 6.0 74.2 80.3 6.1	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho Ieq Lk #4 Ho Ieq Lk #5 Ve Ieq Lk #6 Ve	4.9 crizontal S crizontal S crizontal S crizontal S	4.7 1000 3 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2 Surface 6 41.4 52.9 11.5 face 3" 41.6 51.8 10.2 face 3" 40.7	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 14.1 Away -] 38.9 51.6 12.7	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2 54.6 17.4 Reversed -29.8	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3 54.7 21.4 28.4 53.5 25.1 -21.0	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0 33.3	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0 56.2 28.2 30.9	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0 55.4 27.5	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8 56.9 27.1 -26.0	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9 -28.3 57.6 29.3 24.9	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8 67.7 13.9 -52.7	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 80.5 6.0 74.2 80.3 6.1 -73.9	
#1 Ho leq Leq Lk #2 Ho leq Leq Lk #4 Ho leq Lk #5 Ve leq Lk #6 Q	4.9 prizontal S prizontal S prizontal S prizontal S prizontal S prizontal S prizontal Surfical Surfica	4.7 1000 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.2 Surface 6 42.4 53.6 11.2 Surface 6 41.4 52.9 11.5 face 3" 41.6 51.8 10.2 face a" 7 11.0	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 52.9 13.9 5" Away -38.7 52.8 14.1 Away -] 38.9 51.6 12.7 Away -] -37.5 51.5	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2 54.6 17.4 Reversed -29.8 54.8 25.0	14.7 2000 rd 34.8 54.5 19.6 -29.0 54.3 25.3 rd 34.7 54.4 19.7 ed -33.3 54.7 21.4 28.4 53.5 25.1	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0 33.3 28.8 54.7	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0 56.2 28.2	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0 56.4 27.5	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8 56.9 27.1	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9 -28.3 57.6 29.3	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8 67.7 13.9	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.3 -74.5 80.5 6.0 74.2 80.3 6.1	
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho Ieq Leq Lk #4 Ho Ieq Leq Lk #5 Ve Ieq Leq Lk #6 Q Leq Lk #7 Ve	4.9 crizontal S crizontal S crizontal S crizontal S	4.7 1000 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2 Surface 6 41.4 52.9 11.5 face 3" 41.6 51.8 10.2 face 3" 41.7 51.7 11.0 face 6"	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 12.7 Away -] -37.5 51.5 51.5 14.0 Away -]	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2 54.6 17.4 Reversed -29.8 54.8 25.0 Forward	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 rd 34.7 54.4 19.7 ed -33.3 54.7 21.4 28.4 53.5 25.1 -21.0 53.1 32.1	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0 33.3 28.8 54.7 26.0	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0 56.2 28.2 30.9 55.7 24.7	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0 56.4 27.5 32.0 56.4 24.5	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8 56.9 27.1 -26.0 56.5 30.5	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9 -28.3 57.6 29.3 24.9 57.3 32.4	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8 67.7 13.9 -52.7 67.6 14.9	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 80.5 6.0 74.2 80.3 6.1 -73.9 80.3 6.4	
#1 Ho Ieq Lk #2 Ho Ieq Lk #3 Ho Ieq Lk #4 Ho Ieq Lk #4 Ho Ieq Lk #5 Ve Ieq Lk #6 Ve Ieq Lk #7 Ve Ieq	4.9 prizontal S prizontal S prizontal S prizontal S prizontal S prizontal S prizontal Surfical Surfica	4.7 1000 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2 Surface 6 41.4 52.9 11.5 face 3" 41.6 51.8 10.2 face 3" 40.7 51.7 11.0 face 6" 39.9	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 14.0 Away - 1 -37.5 51.5 14.0 Away - 1 36.7	18.2 1600 7 - Forward 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forward 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 17.4 Reversed -29.8 54.8 25.0 Forward 36.7	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 25.3 rd 34.7 21.4 28.4 53.5 25.1 -21.0 53.1 32.1 31.1	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0 33.3 28.8 54.7 26.0	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0 56.2 28.2 30.9 55.7 24.7	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0 56.4 27.5 32.0 56.5 24.5	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8 56.9 27.1 -26.0 56.5 30.5	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9 -28.3 57.6 29.3 24.9 57.3 32.4 -31.3	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8 67.7 13.9 -52.7 67.6 14.9 52.1	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 80.5 6.0 74.2 80.3 6.1 -73.9 80.3 6.4 72.5	11.9
#1 Ho Ieq Leq Lk #2 Ho Ieq Leq Lk #3 Ho Ieq Leq Lk #4 Ho Ieq Leq Lk #5 Ve Ieq Leq Lk #6 Q Leq Lk #7 Ve	4.9 prizontal S prizontal S prizontal S prizontal S prizontal S prizontal S prizontal Surfical Surfica	4.7 1000 Surface 3 43.7 55.3 11.6 Surface 3 43.5 54.5 11.0 Surface 6 42.4 53.6 11.2 Surface 6 41.4 52.9 11.5 face 3" 41.6 51.8 10.2 face 3" 41.7 51.7 11.0 face 6"	6.0 1250 3" Away 39.9 52.3 12.4 3" Away 40.3 52.4 12.1 5" Away 39.0 52.9 13.9 5" Away -38.7 52.8 12.7 Away -] -37.5 51.5 51.5 14.0 Away -]	18.2 1600 7 - Forwar 37.7 52.4 14.7 7 - Revers -35.8 53.3 17.5 7 - Forwar 37.4 54.2 16.8 7 - Revers -35.7 55.3 19.6 Forward 37.2 54.6 17.4 Reversed -29.8 54.8 25.0 Forward	2000 rd 34.8 54.5 19.6 ed -29.0 54.3 rd 34.7 54.4 19.7 ed -33.3 54.7 21.4 28.4 53.5 25.1 -21.0 53.1 32.1	14.7 2500 30.8 53.9 23.1 -29.6 54.3 24.7 31.9 55.0 23.0 30.2 56.3 26.1 21.8 55.0 33.3 28.8 54.7 26.0	15.0 From 3150 32.0 54.8 22.7 -31.1 54.2 23.1 30.2 54.7 24.5 18.6 56.0 37.4 -28.0 56.2 28.2 30.9 55.7 24.7	13.5 equency 4000 31.7 55.5 23.7 25.1 55.1 29.9 29.0 55.6 26.5 28.1 56.7 28.6 -29.0 56.4 27.5 32.0 56.4 24.5	23.8 (Hz) 5000 23.8 55.9 32.1 -22.4 55.4 33.0 -27.5 55.7 28.2 -27.2 56.9 29.7 -29.8 56.9 27.1 -26.0 56.5 30.5	9.3 6300 26.7 56.7 30.0 25.6 56.4 30.8 25.1 56.8 31.7 27.8 57.8 29.9 -28.3 57.6 29.3 24.9 57.3 32.4	8.4 Awt 56.9 68.4 11.4 -57.1 68.1 11.0 56.2 67.8 11.7 -55.9 68.2 12.3 53.8 67.7 13.9 -52.7 67.6 14.9	8.9 Lin 75.3 81.6 6.3 -76.1 81.3 5.2 74.5 80.8 6.3 -74.5 80.5 6.0 74.2 80.3 6.1 -73.9 80.3 6.4	11.9

#8 Vertic	al Surf				21.5	250	240	22.0	20.4	17.5	£1.2	72.6	
Ieq Leq		-39.6 51.3	-34.0 51.7	-25.1 54.8	31.5 52.7		34.9 54.7	32.0 56.1	-29.4 56.2	17.5 56.8	-51.3 67.1	-73.6 80.0	
Lk		11.7	17.6	29.7	21.2	19.2	19.8	24.1	26.8	39.3	15.8	6.4	
B & K pı	robe 50	63	80	100	125	160	200	Fre 250	equency 315	(Hz) 400	500	630	800
#9 Resid					123	100	200	230	313	400	300	050	800
Ieq ·	-65.3	-63.3	-61.3	-59.3	-57.4		-53.1	-50.6	-47.8	-44.4	-33.1	41.1	42.9
Leq Lk	74.2 8.8	74.1 10.8	74.1 12.8	74.1 14.7	74.2 16.8	74.3 19.0	74.4 21.3	74.3 23.6	74.1 26.3	74.0 29.6	73.7 40.6	73.7 32.6	74.1 31.2
		Surface		y - 50mm			21.5	25.0	20.5		40.0	32.0	J1.2
	-71.3	-69.9	-67.2		-56.0		-60.5	-54.9	-55.8	-52.7	-52.1	-48.7	-46.4
Leq Lk	74.1 2.8	72.3 2.4	73.5 6.3	72.1 8.3	68.9 13.0		68.4 7.9	63.6 8.7	63.0 7.2	58.8 6.2	56.9 4.8	53.0 4.3	51.6 5.2
#11 Vert		rface 6"	Away -	50mm							410	7.5	
_ 1	-69.9 75.1	-70.3 74.0	-67.0 72.5	-57.8 71.1		-56.6	-43.0 -55.5	46.9	-39.7	-48.4 50.1	-46.5	-43.2 50.1	-43.0 40.3
Leq Lk	75.1 5.2	3.8	5.5	13.3	66.5 12.1	68.8 12.2	65.5 22.5	61.6 14.8	62.1 22.4	58.1 9.7	55.0 8.5	50.1 6.8	49.3 6.4
#12 Hori	zontal	Surface	3" Awa	y - 12mm									
_ *	-74.6	-71.6 72.7	-69.5 73.3	-65.6 71.7		-59.6	-61.8	-55.1	-55.9	-53.2	-52.5	-49.0 54.3	-47.3
Leq Lk	74.7 0.1	1.1	3.7	6.1	68.7 9.2	68.4 8.7	69.0 7.2	63.6 8.5	64.1 8.2	60.6 7.5	58.9 6.4	54.3 5.3	53.1 5.8
				y - 12mm		0,,		0.0	0.2	, 10	0.,	0.5	2.0
_ *	-73.7	-71.1	-69.1	-65.7		-58.4	-60.9	-54.3	-55.2	-52.3	-51.8	-48.3	-46.3
Leq Lk	74.4 0.7	72.4 1.3	73.2 4.1	71.7 6.0	68.5 10.5	67.5 9.1	68.2 7.3	63.1 8.8	62.9 7.7	59.3 7.0	57.7 5.8	52.9 4.7	51.9 5.6
#14 Vert		rface 3"			10.5	7.1	,.5	0.0	,.,	7.0	5.0	4.,	5.0
	-73.9	-72.0	-68.5	-63.3		-58.7	-53.8	-48.0	-49.2	-50.0	-47.1	-44.5	-44.4
Leq Lk	75.0 1.1	73.8 1.8	72.0 3.5	70.4 7.1	65.8 9.9	68.6 9.9	65.2 11.5	62.2 14.2	62.8 13.5	59.1 9.1	56.2 9.1	52.0 7.5	50.4 5.9
#15 Vert					7.7	7.7	11.5	14.2	15.5	7.1	7.1	7.5	3.9
Ieq	-71.8	-71.4	-67.4	-60.7		-58.1	-50.1	42.6	-41.0	-47.0	-45.5	-43.1	-42.9
Leq Lk	73.2 1.4	73.2 1.8	71.3 3.9	69.8 9.1	65.6 10.2	68.2 10.1	64.3 14.2	61.5 18.8	62.2 21.2	58.1 11.1	54.8 9.3	50.2 7.1	49.9 7.0
			3" Awa	y - 50mm		10.1	14.2	10.0	21.2	11.1	9.5	7.1	7.0
Ieq	-72.6	-70.4	-67.1	-63.4	-55.9	-58.2	-60.7	-54.5	-55.3	-53.0	-52.4	-48.9	-47.0
Leq Lk	75.4 2.7	73.0 2.6	73.4 6.3	72.0 8.6	69.0 13.0	68.1 9.9	68.8 8.1	63.6 9.1	63.9 8.6	60.5 7.5	58.8 6.4	54.2 5.3	52.7 5.7
#17 Veri							0.1	7.1	6.0	7.5	0.4	3.3	5.1
	-70.7	-70.6	-66.6	-58.2		-55.8	-49.0	-45.1	-47.4	-50.1	-47.6	-44.9	-44.3
Leq Lk	75.0 4.4	74.1 3.5	72.4 5.8	70.5 12.2	65.9 18.0		65.5 16.5	62.4 17.3	62.9 15.5	59.4 9.3	56.5 8.9	52.1 7.2	50.3 6.0
LA	7.7	5.5	5.6	12.2	16.0	12.7	10.5	17.5	13.3	7.5	0.9	1.2	0.0
		1000	1250	1600 0	0000	2500	3150	4000	5000	6200	A		
#9 Resid			1250 ntensity		2000 2	2300	3130	4000	5000	6300	Awt		
Ieq	43.9	-49.4	46.1	49.4			48.3		29.8		-69.2		
Leq	75.4	77.6	76.7	73.3		74.1		73.5			87.7		
Lk #10 Hor	31.4 izontal	28.2 Surface	30.6 6" Awa	23.9 y - 50mm	28.6	30.1	27.6	29.4	30.1	32.9	18.4		
Ieq	-42.5	-38.7	-35.9	-29.5	21.0	-18.1	23.0	19.5	16.6	-57.5	-75.1		
Leq	49.3	48.2	46.2	44.7		41.6		37.0		64.9	80.1		
Lk #11 Ver	6.8 tical Su	9.5 rface 6'	10.2 ' Away -	15.2 50mm	22.4	23.5	16.7	17.5	19.7	7.3	5.0		
	-39.2	-32.9	18.7	32.2	33.8	30.4	10.8	-24.7	-22.4	-52.2	-74.1		
Leq	47.8	48.1	46.4	44.8	43.2			36.5		63.7	80.2		
Lk #12 Hor	8.6 izontal	15.2 Surface	27.7 3" Awa	12.6 ıy - 12mm	9.5	10.0	27.1	11.7	14.4	11.5	6.1		
leq	-43.6	-39.8	-36.5	-32.8	-21.1	-26.2		13.5	-14.2	-58.6	-77.6		
Leq	50.1	48.4	46.6	45.9	45.7	44.3	43.0	40.7	38.8	65.7	80.4		
Lk #13 Hor	6.5	8.6 Surface	10.1 6" Awa	13.1 ıy - 12mm	24.7	18.1	18.7	27.2	24.6	7.1	2.8		
leq	-42.7	-38.3	-35.3	-31.5	23.3	-23.3	25.9	21.8	20.7	-57.9	-76.9		
Leq	49.7	48.6	47.4	45.6	45.3	44.1	43.1	40.5	38.5	65.0	80.1		
Lk #14 Ver	7.0	10.3	12.1	14.1	22.0	20.9	17.2	18.7	17.9	7.1	3.1		
H14 VEI	-40.8	-37.1	-35.1	-26.4	29.3	31.2	30.9	29.0	25.4	-55.0	-76.9		
Leq	48.1	47.3	49.3	46.6	46.3	44.9	43.4	41.0	38.7	64.2	79.9		
Lk	7.3	10.1	14.2	20.2	17.1	13.8	12.5	12.0	13.3	9.2	3.0		

#15 V	ertical Su	rface 6"	Away -	12mm							
	-38.8				36.6	36.1	35.8	32.1	29.1	-52.5	-75.5
	48.7	48.7	49.0	46.3	46.0	45.1	44.0	41.3	39.0	63.6	79.0
Lk	9.9	22.7	19.4	11.0	9.4	9.0	8.2	9.2	9.9	11.1	3.5
#16 F	Iorizontal	Surface	3" Awa	y - 50mm	1						
	-43.3				-25.9		10.4	15.2	14.6	-57.8	-75.8
	49.6	47.9	45.9	44.8	44.2	42.4	40.3	38.2	37.2	65.6	80.6
Lk		8.5		14.1	18.3	15.4	29.9	22.9	22.5	7.8	4.8
#17 \	ertical Su	ırface 3"	' Away -	50mm							
Ieq				-27.1	24.9	20.3	-24.2	-25.1	-22.6	-53.6	-74.5
	47.7	46.7	46.0	45.1	43.9	41.4	38.6	36.9	37.1	64.1	80.1
Lk	7.1	9.5	11.5	18.0	18.9	21.1	14.4	11.8	14.6	10.5	5.6

Table 3: Processed intensity data from Table 2. B&K probe: 50mm probe data used up to 400Hz, 12mm probe data above that. PEI=Phase error index

Surface	e and dist	ance 63	80	100	125	160	200	Fre 250	quency(1 315	Hz) 400	500	630	800
Horizo Ieq PEI	ntal,15 cr NA 6.0	n 69.9 8.4	NA 6.5	NA 6.4	NA 3.8	55.9 7.7	60.5 13.4	54.9 14.9	55.8 19.1	52.7 23.4	51.8 28.6	48.3 21.7	46.3 19.4
Horizo Ieq PEI	ontal, 7.5 o NA 6.1	70,4 8.2	NA 6.5	NA 6.1	NA 3.8	58.2 9.1	60.7 13.2	54.5 14.5	55.3 17.7	53.0 22.1	52.5 28.0	49.0 21.1	47.3 19.2
Vertica Ieq PEI	al, 15 cm NA 3.6	70.3 7.0	67.0 7.3	NA 1.4	NA 4.7	NA 6.8	NA -1.2	-46.9 8.8	NA 3.9	48.4 19.9	45.5 25.1	43.1 19.3	42.9 18.0
Vertica Ieq PEI	al,7.5 cm NA 4.4	70.6 7.3	66.6 7.0	NA 2.5	NA -1.2	NA 6.3	NA 4.8	NA 6.3	47.4 10.8	50.1 20.3	47.1 25.3	44.5 18.9	44.4 19.1
NE216	probe -I	eq only	,										
Ieq Horizo	ontal, 15 c 71.4 ontal, 7.5 c	69.0 cm	65.8	62.9		54.2	58.7	52.9	54.5	50.3	50.1	46.7	45.0
leq	72.4	70.3	67.6	63.5	58.6	56.2	59.6	54.1	54.9	51.0	50.7	47.2	46.2
Ieq	al, 15 cm 69.6 al, 7.5 cm	68.6	65.7	53.4	52.7	54.2	49.9	-48.4	NA	48.7	46.7	43.2	43.7
Ieq	70.6	69.7	66.6	57.4	51.9	55.4	52.1	-42.7	43.6	49.4	47.9	44.5	44.6
T) 0 TZ	1												
	tance						Fre	equency	(Hz)				
Dis Surfac	tance e(cm) 1000 1		1600	2000	2500 3	3150		equency	(Hz)				
Dis Surfac	tance e(cm)		1600 35.3 12.3	2000 NA 3.6	2500 3 NA 0.4				(Hz)				
Dis Surfac Horizo Ieq PEI	tance e(cm) 1000 1 ontal, 15 c 42.7	m 38.3	35.3	NA	NA	NA 3.0	4000 NA	5000 NA	(Hz)				
Dis Surfac Horizo Ieq PEI Horizo Ieq PEI	tance e(cm) 1000 1 ontal, 15 c 42.7 18.2 ontal7.5 43.6 18.7	38.3 11.7 39.8	35.3 12.3 36.5	NA 3.6 NA	NA 0.4 NA -2.3	NA 3.0 NA	4000 NA 4.2 NA	5000 NA 4.5 NA	(Hz)				
Dis Surfac Horizo Ieq PEI Horizo Ieq PEI Vertic Ieq PEI	trance e(cm) 1000 1 ontal, 15 c 42.7 18.2 ontal7.5 43.6 18.7 al 15 cm 38.8	38.3 11.7 39.8 13.4 NA -0.7	35.3 12.3 36.5 14.3	NA 3.6 NA 4.6	NA 0.4 NA -2.3 -36.6 13.0	NA 3.0 NA 5.8	4000 NA 4.2 NA 2.7	5000 NA 4.5 NA -4.0	(Hz)				
Dis Surfac Horizco Ieq PEI Vertico Ieq PEI Vertico Ieq PEI	trance e(cm) 1000 1 ontal, 15 c 42.7 18.2 ontal7.5 43.6 18.7 al 15 cm 38.8 15.3 al, 7.5 cm 40.8	38.3 11.7 39.8 13.4 NA -0.7 37.1 11.9	35.3 12.3 36.5 14.3 NA 5.0 35.1 10.2	NA 3.6 NA 4.6 NA 6.7	NA 0.4 NA -2.3 -36.6 13.0	NA 3.0 NA 5.8 -36.1 14.9	NA 4.2 NA 2.7 -35.8 13.2	5000 NA 4.5 NA -4.0 -32.1 14.0	(Hz)				
Dis Surfac Horizo Ieq PEI Vertic Ieq PEI Vertic Ieq PEI NE216 Horizo Ieq	trance (e(cm) 1000 1 1000 1 1000 1 1000 1 1 1 1 1 1	38.3 11.7 39.8 13.4 NA -0.7 37.1 11.9 eq only	35.3 12.3 36.5 14.3 NA 5.0 35.1 10.2	NA 3.6 NA 4.6 NA 6.7	NA 0.4 NA -2.3 -36.6 13.0 NA 5.3	NA 3.0 NA 5.8 -36.1 14.9 -31.2 10.1	NA 4.2 NA 2.7 -35.8 13.2	5000 NA 4.5 NA -4.0 -32.1 14.0	(Hz)				
Dis Surfac Horizo Ieq PEI Vertic Ieq PEI Vertic Ieq PEI NE216 Horizo Ieq	trance (e(cm)) 1000 1 ontal, 15 c 42.7 18.2 ontal7.5 43.6 18.7 al 15 cm 38.8 15.3 al, 7.5 cm 40.8 17.9 oprobe -I	38.3 11.7 39.8 13.4 NA -0.7 37.1 11.9 eq only	35.3 12.3 36.5 14.3 NA 5.0 35.1 10.2	NA 3.6 NA 4.6 NA 6.7 NA -2.5	NA 0.4 NA -2.3 -36.6 13.0 NA 5.3	NA 3.0 NA 5.8 -36.1 14.9 -31.2 10.1	4000 NA 4.2 NA 2.7 -35.8 13.2 -30.9 8.9	5000 NA 4.5 NA -4.0 -32.1 14.0 -29.0 11.2	(Hz)				
Dis Surfac Horizo Ieq PEI Horizo Ieq PEI Vertic Ieq PEI NE216 Horizo Ieq Horizo Ieq	trance (e(cm) 1000 1 1000 1 1000 1 1 1000 1 1 1000 1 1 1000 1 1 1000 1 1 1000 1 1 1000 1 1 1000 1	38.3 11.7 39.8 13.4 NA -0.7 37.1 11.9 eq only em 40.1 35.6	35.3 12.3 36.5 14.3 NA 5.0 35.1 10.2	NA 3.6 NA 4.6 NA 6.7 NA -2.5	NA 0.4 NA -2.3 -36.6 13.0 NA 5.3 NA 30.2	NA 3.0 NA 5.8 -36.1 14.9 -31.2 10.1	4000 NA 4.2 NA 2.7 -35.8 13.2 -30.9 8.9	5000 NA 4.5 NA -4.0 -32.1 14.0 -29.0 11.2	(Hz)				

Table 4: Intensity measurements outside the duct in the small reverberation room. The loudspeaker was the source.

	50	63	80	100	125	160	200	250	315	400	500	630	800
#1	Residual Pr												
Ieq	-63.9	-61.8	-59.6	-57.4	-55.1		-49.8	-46	25.5	42.7	44	46.2	46.3
Leq		74.2	74.2	74.3	74.2		74.4	74.2	74.1	74.1	73.9	73.7	74.1
Lk	10.4	12.5	14.6	16.8	19.1	21.5	24.6	28.2	48.6	31.4	29.9	27.5	27.9
	Horizontal				m 71 2	71.0	760	70.1	00.6	70.2	(0.1	(0.0	(2.7
Ieq	-76.7	-84.7	-81	-83.5		-71.9	-76.9	-79.1	-80.6	70.3	69.1	69.8	63.7
Leq		90.5 5.7	90.4	89.6		84.1	85.8	86.1 7	89.6 9	84.5	84	80.8	75.2 11.5
Lk #3	3.5 Horizontal	Surface	9.3 6" Aw	6 ov 50m	10.5	12.1	9	′	9	14.2	14.9	11	11.5
Teq	-76.4	-84.1	-81.1	-83.9		-70.1	-76.1	-78.5	-79.6	72.4	66.5	71.3	65.3
Leq		90.2	90.4	90.5		82.9	85.5	85.5	88.3	83.5	82.2	78.8	74.2
Lk	4	6.2	9.3	6.6	11.9		9.4	7	8.8	11.1	15.7	7.5	8.9
	Vertical Su				11.7	12.,	· · · ·	•	0.0		10	,	0.,
leq		-83.1	-72.5	81.6	-72.8	-68.3	-67.3	-75.2	-73.6	71	69.6	69.4	65.8
Leg		88.9	91.1	89.2		81.4	79.7	86.1	88.2	82.3	81.2	79.1	72.9
Lk	3	5.7	18.6	7.6	11.3	13	12.4	10.9	14.6	11.3	11.6	9.7	7.1
#5	Vertical Su	ırface - 6	" Away	- 50mm									
Ieq		-82.7	-70.2	80.8	-75	-68	-57.2	-73.7	-68.2	72.1	70.2	71.7	66.4
Leg		88.7	90.5	89.1		80.9	79.4	85.6	87.1	80.7	79.3	76.9	73.6
Lk	3	6	20.3	8.3	9.6	12.9	22.2	11.8	18.9	8.7	9.1	5.2	7.1
_	Horizontal										40.0	=0.4	
leq		-86.5	-83.8	-84.6		-72.7	-77.9	-79.1	-80.7	72	69.8	70.1	65.1
Leq		90.2	90.2	89.8	87.8		86.1	86.3	89.8	84.6	83.7	80.4	75.2
Lk	1.8	3.7	6.4	5.1	15	11.3	8.2	7.2	9.1	12.6	13.9	10.2	10.1
	Horizontal	-86.8		ay - 12m -85.1		71 0	-77.1	70.4	91.0	72.4	65.5	70.6	65.3
Ieq Leo		90.7	-84.4 90.9	90.6		-71.8 83.1	85.9	-79.4 86	-81.2 88.5	83.6	65.5 82.3	70.6 78.8	03.3 74
Lk	1.8	3.9	6.5	5.4	23.7		8.8	6.6	7.4	11.3	16.8	8.2	8.7
	Vertical Su		" Away	- 12mm	25.1	11.5	0.0	0.0	7	11.5	10.0	0.2	0.7
Ïeq		-85.7	-81.4	78.2	-74.7	-70.1	-67.2	-74.5	-73.6	71.4	70.1	69.5	66.1
Leo		89.1	90.7	89		81.7	80	86.4	88.4	82.4	81.2	78.7	72.7
Lk	1.1	3.4	9.3	10.8	9.6		12.7	11.8	14.8	11	11.1	9.2	6.6
	37 4 10		-11 4										
#9	vertical St	irrace - c) Away	- 12mm									
#9 Ieq	Vertical Su -78.6	-84.9	o" Away -81.4	75.7		-69.7	-51.4	-74.1	-67.8	72.8	71.1	72.1	67.1
	-78.6 79.8			75.7 89.1	-77.4 85	81	-51.4 79.4	85.7	87.1	72.8 80.3	79.3	77.3	74.3
Ieq	-78.6	-84.9	-81.4	75.7	-77.4	81							
Ieq Lec	-78.6 79.8	-84.9 88.9	-81.4 90.7	75.7 89.1	-77.4 85	81	79.4	85.7	87.1	80.3	79.3	77.3	74.3
Ieq Lec	-78.6 79.8 1.2	-84.9 88.9 4	-81.4 90.7 9.4	75.7 89.1 13.4	-77.4 85 7.6	81 11.3	79.4 28	85.7 11.6	87.1 19.3	80.3 7.4	79.3 8.2	77.3	74.3
Ieq Lec	-78.6 79.8 1.2	-84.9 88.9 4	-81.4 90.7 9.4 1600	75.7 89.1 13.4 2000	-77.4 85 7.6 2500	81 11.3 3150	79.4 28	85.7	87.1	80.3	79.3	77.3	74.3
Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R	-84.9 88.9 4 1250 Residual	-81.4 90.7 9.4 1600 Pressure	75.7 89.1 13.4 2000 Intensit	-77.4 85 7.6 2500 3 y index	81 11.3 3150	79.4 28 4000	85.7 11.6 5000	87.1 19.3 6300	80.3 7.4 Awt	79.3 8.2 Lin	77.3	74.3
Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4	-84.9 88.9 4 1250 (esidual	-81.4 90.7 9.4 1600 Pressure 54.8	75.7 89.1 13.4 2000 Intensity 47.7	-77.4 85 7.6 2500 3 y index 47.2	81 11.3 3150 44.1	79.4 28 4000 46.2	85.7 11.6 5000 36	87.1 19.3 6300 -23.4	80.3 7.4 Awt 57.2	79.3 8.2 Lin -67.2	77.3	74.3
Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4	-84.9 88.9 4 1250 (esidual -51 77.6	-81.4 90.7 9.4 1600 Pressure 54.8 76.8	75.7 89.1 13.4 2000 -Intensity 47.7 73.3	-77.4 85 7.6 2500 3 y index 47.2 75	81 11.3 3150 44.1 74.1	79.4 28 4000 46.2 75.9	85.7 11.6 5000 36 73.7	87.1 19.3 6300 -23.4 60	80.3 7.4 Awt 57.2 86	79.3 8.2 Lin -67.2 87.7	77.3	74.3
Ieq Lec Lk	1000 #1 R 46.4 1 75.4 29.1	-84.9 88.9 4 1250 lesidual -51 77.6 26.7	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22	75.7 89.1 13.4 2000 Intensity 47.7 73.3 25.6	-77.4 85 7.6 2500 3 y index 47.2 75 27.8	81 11.3 3150 44.1 74.1	79.4 28 4000 46.2	85.7 11.6 5000 36	87.1 19.3 6300 -23.4	80.3 7.4 Awt 57.2	79.3 8.2 Lin -67.2	77.3	74.3
Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal	-84.9 88.9 4 1250 Residual -51 77.6 26.7 Surface 64.6	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22	75.7 89.1 13.4 2000 Intensity 47.7 73.3 25.6	-77.4 85 7.6 2500 3 y index 47.2 75 27.8	81 11.3 3150 44.1 74.1 30.1	79.4 28 4000 46.2 75.9	85.7 11.6 5000 36 73.7	87.1 19.3 6300 -23.4 60	80.3 7.4 Awt 57.2 86	79.3 8.2 Lin -67.2 87.7	77.3	74.3
Ieq Lk Ieq Lec Lk #2	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4	-84.9 88.9 4 1250 Residual -51 77.6 26.7 Surface	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 - 3" Aw	75.7 89.1 13.4 2000 -Intensit 47.7 73.3 25.6 vay - 50m	-77.4 85 7.6 2500 3 y index 47.2 75 27.8	81 11.3 3150 44.1 74.1 30.1 54.9	79.4 28 4000 46.2 75.9 29.7	85.7 11.6 5000 36 73.7 37.7	87.1 19.3 6300 -23.4 60 36.6	80.3 7.4 Awt 57.2 86 28.7	79.3 8.2 Lin -67.2 87.7 20.5	77.3	74.3
Ieq Lk Ieq Lec Lk #2 Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 76.8 9.4	-84.9 88.9 4 1250 -51 77.6 26.7 Surface 64.6 73.4 8.8	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 - 3" Aw 61 70.3 9.3	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 7ay - 50m 60 69.8 9.8	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 nm 59.7 69.7	81 11.3 3150 44.1 74.1 30.1 54.9	79.4 28 4000 46.2 75.9 29.7 49.1	85.7 11.6 5000 36 73.7 37.7 40	87.1 19.3 6300 -23.4 60 36.6 35.5	80.3 7.4 Awt 57.2 86 28.7 -71.9	79.3 8.2 Lin -67.2 87.7 20.5 -89.4	77.3	74.3
Ieq Lec Lk #2 Ieq Lec Lk #3	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.8 9.4 Horizontal	-84.9 88.9 4 1250 (esidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 - 3" Aw 61 70.3 9.3 - 6" Aw	75.7 89.1 13.4 2000 3-Intensity 47.7 73.3 25.6 7ay - 50m 60 69.8 9.8 yay - 50m	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 nm 59.7 10	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6	77.3	74.3
Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq	1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 Horizontal 67.4 Horizontal	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 - 3" Aw 61 70.3 9.3 - 6" Aw 62.2	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 7ay - 50m 60 69.8 9.8 7ay - 50m 61.4	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 im 59.7 69.7 10 im 61.4	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8	77.3	74.3
Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq Lec	-78.6 79.8 1.2 1000 #1 R 46.4 75.4 29.1 Horizontal 67.4 9.4 Horizontal 67.4 76.6	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 - 3" Aw 61 70.3 9.3 - 6" Aw 62.2 71.9	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 vay - 50m 60 69.8 9.8 vay - 50m 61.4 70	-77.4 85 7.6 2500 2 y index 47.2 75 27.8 im 59.7 69.7 10	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7	77.3	74.3
Ieq Lec Lk Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 75.4 29.1 Horizontal 67.4 76.8 9.4 Horizontal 67.4 76.6	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Aw 62.2 71.9	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 7ay - 50m 69.8 9.8 7ay - 50m 61.4 70 8.5	-77.4 85 7.6 2500 2 y index 47.2 75 27.8 im 59.7 69.7 10 nm 61.4 69.4	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8	77.3	74.3
Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq Lec Lk #4	-78.6 79.8 1.2 1000 #1 R 46.4 75.4 29.1 Horizontal 67.4 76.8 9.4 Horizontal 67.4 76.6 9.3 Vertical Si	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 - 3" Aw 61 70.3 9.3 - 6" Aw 62.2 71.9 9.7 3" Away	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74y - 50m 69.8 9.8 74y - 50m 61.4 70 8.5 7 - 50mm	-77.4 85 7.6 2500 2 y index 47.2 75 27.8 im 59.7 69.7 10 im 61.4 8	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9	77.3	74.3
Ieq Lec Lk Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq Lec Lk #4 Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.8 9.4 Horizontal 67.4 1 76.6 9.3 Vertical Si	-84.9 88.9 4 1250 1250 177.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface - 63.7	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Aw 62.2 71.9 9.7 3" Away 59.1	75.7 89.1 13.4 2000 2-Intensity 47.7 73.3 25.6 7ay - 50m 60 69.8 9.8 7ay - 50m 61.4 70 8.5 7 - 50mm 58.2	77.4 85 7.6 2500 3 y index 47.2 75 27.8 nm 59.7 69.7 10 nm 61.4 69.4 8	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9	77.3	74.3
Ieq Lec Lk #2 Lec Lk #3 Ieq Lec Lk #4 Ieq Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.8 9.4 Horizontal 67.4 1 76.6 9.3 Vertical St 66.7 73.7	-84.9 88.9 4 1250 1250 177.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface -3 63.7 71.8	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 - 3" Aw 61 70.3 9.3 - 6" Aw 62.2 71.9 9.7 3" Away 59.1 70.9	75.7 89.1 13.4 2000 2-Intensity 47.7 73.3 25.6 7ay - 50m 60 69.8 9.8 7ay - 50m 61.4 70 8.5 7 - 50mm 58.2 69.9	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 inm 59.7 69.7 10 inm 61.4 69.4 8	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9	77.3	74.3
Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq Lec Lk #4 Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.6 9.3 Vertical S 66.7 73.7	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface - 3 63.7 71.8 8.2	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Aw 62.2 71.9 9.7 3" Away 59.1 70.9	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 7ay - 50m 60 69.8 9.8 7ay - 50m 61.4 70 8.5 7 - 50mm 58.2 69.9 11.7	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 am 59.7 69.7 10 nm 61.4 69.4 8	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9	77.3	74.3
Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq Lec Lk #4 Ieq Lec Lk #4 Ieq Lec Lk #5	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 76.6 9.3 Vertical S Vertical S	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface - 1 63.7 71.8 8.2 urface - 2	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Aw 62.2 71.9 9.7 3" Away 59.1 70.9 11.7	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74.7 60 69.8 9.8 74.7 61.4 70 8.5 7 - 50mm 58.2 69.9 11.7 7 - 50mm	77.4 85 7.6 2500 3 y index 47.2 75 27.8 im 59.7 69.7 10 im 61.4 69.4 8 56.9 68.6 11.7	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9	77.3	74.3
Ieq Lec Lk #2 Leq Lec Lk #3 Ieq Lec Lk #4 Ieq Lec Lk #4 Ieq Lec Lk #5 Ieq	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.8 9.4 Horizontal 67.4 1 76.6 9.3 Vertical S 66.7 73.7 Vertical S 67.6	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 surface - 63.7 71.8 8.2 urface - 66.8	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61.7 70.3 9.3 -6" Away 59.1 70.9 11.7 6" Away 61.7	75.7 89.1 13.4 2000 3-Intensity 47.7 73.3 25.6 74.7 60.8 9.8 74.7 61.4 70 8.5 7.50mm 58.2 69.9 11.7 7.50mm 60.9	77.4 85 7.6 2500 3 y index 47.2 75 27.8 sum 59.7 69.7 10 nm 61.4 69.4 8 56.9 68.6 11.7	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 57.4	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9 -82.2 96.8 14.6	77.3	74.3
Ieq Lec Lk #2 Ieq Lec Lk #3 Ieq Lec Lk #4 Ieq Lec Lk #4 Ieq Lec Lk #5	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.6 9.3 Vertical Si 66.7 7 7 Vertical Si 67.6 7	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface - 63.7 71.8 8.2 urface - 66.8 75.6	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Aw 59.1 70.9 11.7 6" Away 59.1 70.9	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74.7 60.8 9.8 74.7 61.4 70 8.5 7.50mm 58.2 69.9 11.7 7.50mm 60.9 69.5	-77.4 85 7.6 2500 2 y index 47.2 75 27.8 im 59.7 69.7 10 im 61.4 69.4 8 56.9 68.6 11.7	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 57.4 65.3	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3 60.3	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2 55.1	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1 53.2	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3 86.5	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9 -82.2 96.8 14.6	77.3 5.2	74.3
Ieq Lec Lk #2 Lec Lk #4 Ieq Lec Lk #5 Ieq Lec Lk Lc Lk #6 Lec Lk #6 Lc Lk #6 Ieq Lc Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.6 9.3 Vertical St 66.7 7 Vertical St 67.6 7 9.4	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface -3 63.7 71.8 8.2 urface -6 63.7 75.8 8.2 urface -6 63.8	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Aw 59.1 70.9 11.7 6" Away 61.7 70.9 9.2	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74.7 - 50m 60.8 74.7 - 50mm 58.2 69.9 11.7 7 - 50mm 60.9 69.5 8.6	-77.4 85 7.6 2500 2 y index 47.2 75 27.8 im 59.7 69.7 10 im 61.4 69.4 8 56.9 68.6 11.7 59.5 68.2	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 57.4 65.3	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1 53.2	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9 -82.2 96.8 14.6	77.3 5.2	74.3
Ieq Lec Lk #2 Lec Lk #4 Ieq Lec Lk #5 Ieq Lec Lk Lc Lk #6 Lec Lk #6 Lc Lk #6 Ieq Lc Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 1 76.8 9.4 Horizontal 67.4 1 76.8 9.3 Vertical S 66.7 7 7 Vertical S 67.6 7 9.9 4 Horizontal	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface -3 63.7 71.8 8.2 urface -6 63.7 75.8 8.2 urface -6 63.8	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Aw 59.1 70.9 11.7 6" Away 61.7 70.9 9.2	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74.7 - 50m 60.8 74.7 - 50mm 58.2 69.9 11.7 7 - 50mm 60.9 69.5 8.6	-77.4 85 7.6 2500 2 y index 47.2 75 27.8 im 59.7 69.7 10 im 61.4 69.4 8 56.9 68.6 11.7 59.5 68.2	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 57.4 65.3 7.8	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3 60.3	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2 55.1 19.9	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1 53.2 14	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3 86.5	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9 -82.2 96.8 14.6	77.3 5.2	74.3
Ieq Lec Lk #2 Lec Lk #3 Ieq Lec Lk #4 Ieq Lec Lk #4 Ieq Lec Lk #5 Ieq Lec Lk #6	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.8 9.4 Horizontal 67.4 1 76.6 9.3 Vertical S 66.7 73.7 Vertical S 67.6 1 76.9 9.4 Horizontal	-84.9 88.9 4 1250 1250 177.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface - 63.7 71.8 8.2 urface - 66.8 8.2 surface - 66.8	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61.7 70.3 -6" Away 59.1 70.9 11.7 6" Away 59.1 70.9 11.7 70.9 9.2 -3" Aw	75.7 89.1 13.4 2000 2-Intensity 47.7 73.3 25.6 7ay - 50m 60.9 8.5 7 - 50mm 58.2 69.9 11.7 7 - 50mm 60.9 9.8 7 - 50mm 58.2 69.9 11.7 7 - 50mm	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 mm 59.7 69.7 10 nm 61.4 69.4 8 56.9 68.6 11.7	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 7.8 57.4 65.3 7.8	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3 60.3 9	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2 51.9 9	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1 53.2 14 43.5	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3 86.5 11.2	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9 -82.2 96.8 14.6 -81	77.3 5.2	74.3
Ieq Lec Lk #2 Lec Lk #4 Ieq Lec Lk #5 Ieq Lec Lk Lk #6 Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.6 9.3 Vertical S 66.7 73.7 Vertical S 67.6 1 76.9 9.4 Horizontal 67.6 9.3 Vertical S 67.6 76.9 9.4 Horizontal 67.6 8.8	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.7 74.1 8.9 urface - 63.7 71.8 8.2 urface - 66.8 75.6 8.8 I Surface - 66.8 75.6 8.8 I Surface - 66.8 75.6 8.9	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Away 59.1 70.9 11.7 6" Away 59.1 70.9 9.2 -3" Av 61.7 70.9 9.2 -3" Av 61.7 70.9 9.2 -3" Av 61.7 70.9	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74.7 - 50mm 69.8 9.8 74.7 - 50mm 58.2 69.9 11.7 7 - 50mm 60.9 69.5 8.6 9.8 7 - 12m	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 am 59.7 69.7 10 am 61.4 69.4 8 56.9 68.6 11.7 59.5 68.2 8.7 am	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 57.4 65.3 7.8	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3 60.3 9 55.3	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2 55.1 19.9 48.1 60.6	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1 53.2 14 43.5 56.8	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3 86.5 11.2	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98 8.6 -88.8 97.7 9 -82.2 96.8 14.6 -81 96.4 15.4	77.3 5.2	74.3
Ieq Lec Lk #2 Lec Lk #4 Ieq Lec Lk #5 Ieq Lec Lk #6 Ieq Lec Lk #7	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.6 9.3 Vertical S 66.7 73.7 Vertical S 67.6 1 76.9 9.4 Horizontal 68 8.8 Horizontal	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.6 73.4 8.8 Surface 65.2 74.1 8.9 urface - 1 63.7 71.8 8.2 urface - 66.8 75.6 8.8 I Surface - 66.8 75.6 8.9 I Surface - 64.7 73.6 8.9	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Away 59.1 70.9 9.2 -3" Avay 59.1 70.9 9.2 -3" Avay 61.7 70.9 9.2 -3" Avay 61.7 70.9	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74.7 60.8 9.8 74.7 61.4 70 8.5 7.50mm 58.2 69.9 11.7 7.50mm 60.9 69.5 8.6 8.6 8.7 9.8 7.7 10.4 8.5 7.1 10.4 8.5	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 sum 59.7 69.7 10 mm 61.4 69.4 8 56.9 68.6 11.7 59.5 68.2 8.7 nm	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 57.4 65.3 7.8 58.7 69.5 10.7	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3 60.3 9 55.3 66.8 11.5	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2 55.1 19.9 48.1 60.6 12.6	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1 53.2 14 43.5 56.8 13.3	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3 86.5 11.2 -71.1 88.9 17.8	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98.6 -88.8 97.7 9 -82.2 96.8 14.6 -81 96.4 15.4 -90.9 98 7.1	77.3 5.2	74.3
Ieq Lec Lk #2 Lec Lk #4 Ieq Lec Lk #5 Ieq Lec Lk Lk #6 Lec Lk	-78.6 79.8 1.2 1000 #1 R 46.4 1 75.4 29.1 Horizontal 67.4 1 76.6 9.3 Vertical S 66.7 73.7 Vertical S 67.6 1 76.9 9.4 Horizontal 68 8.8 Horizontal	-84.9 88.9 4 1250 lesidual -51 77.6 26.7 Surface 64.7 74.1 8.9 urface - 63.7 71.8 8.2 urface - 66.8 75.6 8.8 I Surface - 66.8 75.6 8.8 I Surface - 66.8 75.6 8.9	-81.4 90.7 9.4 1600 Pressure 54.8 76.8 22 -3" Aw 61 70.3 9.3 -6" Away 59.1 70.9 11.7 6" Away 59.1 70.9 9.2 -3" Av 61.7 70.9 9.2 -3" Av 61.7 70.9 9.2 -3" Av 61.7 70.9	75.7 89.1 13.4 2000 -Intensity 47.7 73.3 25.6 74.7 - 50mm 69.8 9.8 74.7 - 50mm 58.2 69.9 11.7 7 - 50mm 60.9 69.5 8.6 9.8 7 - 12m	-77.4 85 7.6 2500 3 y index 47.2 75 27.8 sum 59.7 69.7 10 mm 61.4 69.4 8 56.9 68.6 11.7 59.5 68.2 8.7 nm	81 11.3 3150 44.1 74.1 30.1 54.9 66.1 11.2 55.7 66 10.4 53.6 64.9 11.3 57.4 65.3 7.8	79.4 28 4000 46.2 75.9 29.7 49.1 61.8 12.7 50.6 61.8 11.2 46.7 60 13.3 51.3 60.3 9 55.3 66.8	85.7 11.6 5000 36 73.7 37.7 40 56.1 16.1 42.1 56.4 14.3 -41.2 55.3 14.1 -35.2 55.1 19.9 48.1 60.6 12.6	87.1 19.3 6300 -23.4 60 36.6 35.5 53.6 18.2 36.9 53.6 16.7 -39.5 53.3 13.8 -39.1 53.2 14 43.5 56.8	80.3 7.4 Awt 57.2 86 28.7 -71.9 88.7 16.8 -61.6 87.8 26.2 72.3 86.9 14.6 75.3 86.5 11.2 -71.1 88.9 17.8	79.3 8.2 Lin -67.2 87.7 20.5 -89.4 98.6 -88.8 97.7 9 -82.2 96.8 14.6 -81 96.4 15.4 -90.9 98 7.1	77.3 5.2	74.3

Leq	76.6				72	69.7	66.7			88.1	98.1
Lk	9.4	9.5	9.5	8.8	8.1	10	10.8	10.6	11	16.5	6.9
#8 1	Vertical Su	rface - 3	3" Away	- 12mm							
Ieq	66.6	65.3	61.7	60.7	59.1	58.9	55.7	51.1	47.2	73.2	-87.3
	74.3						65.2	60.4	56.4	87.2	96.8
Lk	7.7	8	10.8	10.6	11.3	9.5	9.5	9.3	9.2	14.1	9.5
#9	Vertical Su	rface - 6	5" Away	- 12mm							
Ieq	68.8	67.9	63.4	63.2	62.6	61.7	58.2	53.3	49.1	76.3	-86.8
Lea	77.3	75.7	72	70.9	70.4	68.9	65.5	60.6	56.5	86.8	96.5
Lk			8.6	7.8	7.8	7.2	7.3	7.3	7.3	10.4	9.7

Table 5: Processed intensity data from Table 4. 50mm probe data used up to 400Hz, 12mm probe data above that.

Surface	and Dis	stance 63	80	100	125	160	200	250	315	400	500
Horizon Ieq PEI	ntal, 15c NA 6.4	m NA 6.3	NA 5.3	83.9 10.2	-76.3 7.2		76.1 15.2	78.5 21.2	79.6 39.8	-72.4 20.3	NA 6.9
Horizon Ieq PEI	ntal, 7.56 NA 6.9	cm NA 6.8	NA 5.3	83.5 10.8	NA 2.8	71.9 9.4	76.9 15.6		80.6 39.6	-70.3 17.2	-69.8 9.8
Vertica Ieq PEI	nl, 15cm 76.6 7.4	NA 6.5	NA -5.7	-80.8 8.5	75.0 9.5		NA 2.4	73.7 16.4			-71.1 15.5
Vertica Ieq PEI	al, 7.5cm 76.9 7.4		NA -4.0	-81.6 9.2	72.8 7.8		67.3 12.2	75.2 17.3	73.6 34.0	-71.0 20.1	-70.1 12.6
Surface	e and Di 630	stance 800	1000	1250	1600	2000	2500	3150	4000	5000	
Horizo Ieq PEI	ntal, 150 -70.6 13.1			-64.9 11.0	NA 6.3	-62.6 10.6					
Horizo Ieq PEI	ntal, 7.5 -70.1 11.1			-64.7 11.6		-61.3 9.0					
Vertica Ieq PEI	al, 15cm -72.1 16.1	-67.1 14.5		-67.9 12.7		-63.2 11.6					
Vertica Ieq PEI	al, 7.5cm -69.5 12.1	1 -66.1 15.1	-66.6 15.2	-65.3 12.5		-60.7 8.8		-58.9 14.4		-51.1	

Table 6: Sound intensity measurements in large reverberation room. Loudspeaker source, B&K probes

					quency	(Hz)							
#1	50 Residual F	63	80	100	125	160	200	250	315	400	500	630	800
Teq	-57.9	-54.1	-51.1	-36.4	48.8	50.2	50.9	51.2	51.3	50.8	50.9	51.0	51.3
Leq		73.9	73.9	73.9	73.9	74.0	74.1	74.0	73.8	73.7	73.5	73.4	73.9
Lk	16.1	19.8	22.7	37.5	25.1	23.8	23.1	22.7	22.6	22.9	22.6	22.4	22.5
#2 Ieq	Inside the -94.2	-95.7	mm -91.9	4-93.1	-93.3	-92 9	-969	-102.2	-101 <i>4</i>	-89.1	-90.3	-95.0	-79.7
Leq		93.3	94.3	97.0		92.5	101.1	103.2	105.1	92.1	95.3	99.7	90.0
Lkî	-0.6	-2.4	2.4	3.9	4.6	-0.4	4.1	1.0	3.7	2.9	5.0	4.7	10.3
	Inside the -94.7				⊧2 -93.8	02.0	067	-101.9	101.2	-88.2	000	02.7	-80.8
Ieq Leq		-95.7 93.2	-91.4 93.6	-92.7 96.4	98.1	92.7	100.8	102.6	105.0	-86.2 89.8	-88.2 91.4	-92.7 96.8	-80.8 89.2
Lk	-1.0	-2.4	2.3	3.7	4.3	-0.3	4.2	0.7	3.7	1.5	3.2	4.0	8.3
_	Inside the						0 · =						=0 <
leq Leg	-94.1 92.7	-96.1 93.4	-91.4 93.6	-92.9 96.6	-93.6 97.6	-92.7 92.2	-96.7 100.5	-101.9 102.5	-100.7 104.2	-86.2 87.9	-83.4 86.0	-88.1 92.7	-79.6 88.0
Lk	-1.5	-2.6	2.2	3.6	4.0	-0.5	3.8	0.6	3.5	1.7	2.7	4.6	8.3
	Inside the		2 mm -		‡ 1								
Ieq	-94.4	-96.0	-91.8	-93.2	-93.8			-102.2		-89.1	-90.1	-94.8	-78.6
Leq Lk	94.0	93.0 -2.9	93.5 1.7	96.7 3.4	98.2 4.4	92.9 -0.1	101.3 4.5	102.9 0.7	105.6 4.1	92.0 2.9	95.8 5.8	99.7 4.9	89.6 11.0
	Inside the					-0.1	4.5	0.7	4.1	2.9	5.6	4.9	11.0
Ieq	-94.7	-95.9	-92.2	-93.3	-94.0		-96.7	-102.1		-88.2	-88.2	-92.8	-82.3
Leq		93.0	94.0	96.7	98.3		101.0	102.6	105.4	89.9	92.0	96.7	89.2
Lk #7	-1.1 Inside the	-2.9 Duct 1	1.9	3.4 Position t	4.3	-0.3	4.3	0.5	4.0	1.8	3.8	3.9	6.9
leq	-95.0	-96.2	-91.5	-93.2	-93.8	-93.0	-96.6	-101.8	-100.8	-86.4	-82.8	-88.0	-79.2
Leq		93.1	93.4	96.5	97.6	92.3	100.4	102.2	104.4	88.1	85.5	92.8	88.1
Lk	-1.9 Inside the	-3.1	1.9	3.3	3.8	-0.7	3.9	0.4	3.6	1.7	2.7	4.9	8.8
#o Ieq	-94.8	-96.5	- 91.7	-93.2		-93.4	-97.0	-102.6	-101 5	-89.8	-90.7	-96.5	-85.8
Leq		94.0	93.8	96.9		93.0	101.2	103.2	105.6	93.0	96.5	99.0	89.3
Lk	-1.0	-2.5	2.0	3.6	4.1	-0.4	4.2	0.7	4.1	3.2	5.8	2.4	3.6
#9 Ieq	Inside the -95.2	-96.3	- 2 mm -92.1	Position #		-93.2	07.2	-102.6	101.7	-89.2	-88.1	04.1	-84.6
Lea		93.5	94.0	96.8	98.1		101.3	103.1	105.3	90.7	92.5	-94.1 95.7	-84.6 88.9
Lk	-2.0	-2.8	1.9	3.3	3.9	-0.4	4.1	0.5	3.7	1.5	4.4	1.7	4.3
	Inside the					00.4	07.0	100.0	404.0	05.0	00.5	00.5	04.0
leq Leq	-95.3 92.8	-96.3 93.4	-92.0 93.9	-93.9 96.9	-94.2 98.0	-93.4 92.6	-97.0 101.0	-102.3 102.6	-101.3 104.7	-87.9 89.0	-83.5 87.2	-90.5 94.8	-81.9 91.0
Lk	-2.6	-2.9	1.9	3.0	3.8	-0.7	4.0	0.3	3.4	1.2	3.8	4.3	9.1
#11	Inside the			Position	#4								
Ieq		-96.0	-91.5	-93.1		-93.4		-102.4		-89.9	-90.6	-95.9	-85.0
Leq Lk	ı 93.5 -0.9	93.5 -2.4	93.8 2.3	96.9 3.8	98.1 4.2		101.4 4.2	103.1 0.6	105.7 3.9	92.8 2.9	96.1 5.5	98.4 2.6	88.3 3.3
	Inside the					0.4	7.2	0.0	3.7	2.7	5.5	2.0	5.5
Ieq		-95.9	-91.6	-93.5		-93.3		-102.5		-89.3	-88.0	-93.9	-84.1
Leq Lk	1 93.2 -1.6	93.7 -2.3	94.0 2.5	97.2 3.6	98.3 4.1	92.8 -0.5	101.2 4.1	103.2 0.7	105.3 3.6	90.8 1.5	92.2	95.6	88.6
	Inside the		50 mm .			-0.5	4.1	0.7	3.0	1.5	4.1	1.6	4.5
Ieq	-94.6	-95.9	-91.6	-93.1		-92.9	-96.7	-102.0	-101.3	-87.7	-83.4	-90.2	-82.2
Leq		93.4	94.0	96.6		92.5	100.7				87.2	94.6	90.3
Lk #14	-2.0 Inside the		2.4	3.5	4.1 #7	-0.4	4.0	0.6	3.4	1.2	3.8	4.4	8.1
leq				- 105111011 -93.1	-93.8	-93.1	-96.7	-102.3	-102.0	-90.2	-91.9	-96.1	-86.8
Leg	93.4	93.0	94.5	97.0	98.2	92.6	100.6		105.5		96.5	100.4	
Lk				3.9	4.4	-0.5	3.9	0.5	3.5	3.0	4.6	4.3	3.8
#15 Ieq	Inside the			Position - 92.8-		-92.9	06.0	-102.1	101.7	-89.7	-89.1	-94.1	-86.1
Lec				96.4			100.9		105.2			97.9	
Lk	-1.4	-3.1	2.2	3.6	4.0		4.0		3.5			3.8	
	Inside the					00.4	06.4	101 6	101 6	00.5	040	00.0	04.0
Ieq Lec				-93.5 96.5	-93.6 97.7	-92.4 92.2		-101.6 102.2			-84.8 88.4	-90.8 94.5	
Lk				3.0	4.1		3.8		2.9			3.7	
#17	Inside the	e Duct -	12 mm	- Position	#7								
Ieq				-93.2		-93.2		-102.0			-91.2	-95.8	
Lec Lk					98.0 3.8		100.9 4.1				96.1 4.9	99.5 3.7	
	-1.0	5.0	2.2	5.4	5.0	0.5	7.1	0.0	٥. ر	2.7	7.7	5.1	5.2

ш10	T: JL.	Dunt 1	2	Danisian I	цо								
H10 Ieq	Inside the -94.6	-96.2	-92.4	-93.4	-94.2	-92.9	-96.7	-102.0	-101.5	-89.6	-88.8	-93.8	-86.1
Leq		93.1	94.4	96.8	98.2	92.5		102.6		91.3	92.8	96.9	90.2
Lk	-1.9	-3.1	2.0	3.4	4.0	-0.4	4.2	0.6	3.7	1.7	4.0	3.1	4.1
#19	Inside the				₩								0.4.0
Ieq	-95.5	-96.8	-91.8	-94.1	-94.2	-92.9		-101.7		-88.5	-84.3	-90.3	-86.0
Leq		93.4	93.6	96.8	97.9	92.4	100.4		104.5	89.7	88.0	94.0	89.5
Lk	-2.7 Horizonta	-3.5	1.8	2.7	3.7	-0.4	3.8	0.4	3.3	1.2	3.6	3.7	3.5
_	58.0	-73.6	e - 12 m -69.6	m - 3 AV -69.3	-70.8	67.0	-67.7	-69.0	68.6	-37.7	-56.2	-60.5	-51.3
leq Leq		74.3	71.4	71.0	74.6		74.2	80.6	82.7	71.2	66.0	70.4	61.6
Lk	19.4	0.7	1.8	1.7	3.8	4.8	6.5	11.6	14.0	33.5	9.8	9.9	10.3
	Vertical S				v 5.0	7,0	0.5	11.0	14.0	33.5	7.0	7.7	10.5
Ieq	74.4	69.0	68.6	61.0	-63.2	52.7	-65.8	-68.6	-73.3	-59.7	-56.1	-59.5	-54.0
Leq		72.1	71.5	71.9	74.1	70.7	75.0	81.3	84.8	71.6	66.1	68.4	61.1
Lk	0.4	3.1	2.9	10.9	10.9	18.0	9.2	12.7	11.5	11.9	10.0	8.9	7.0
#22	Horizonta		e - 50 m	ım - 3" Av	way								
Ieq	67.7	-72.1	-69.3	-68.4	-70.9		-68.0		69.5	47.8	-56.1	-60.5	-51.5
Leq		74.5	71.7	70.8	74.4		73.8		82.8	71.4	66.0	70.5	61.4
Lk	9.5	2.5	2.4	2.4	3.5	4.9	5.8	12.5	13.3	23.7	10.0	10.0	9.8
	Vertical S	-70.9	-65.6	- 3 Awa -68.7	y -71.3	62 6	-69.7	-73.4	-76.7	-62.7	-57.3	-60.6	-54.9
leq		72.2	71.6	72.1		71.0	75.5		85.2	72.0	66.5	68.9	61.4
Leq Lk	1.6	1.3	6.0	3.4	3.1	7.4	5.8			9.3	9.2	8.3	6.5
LK	1.0	1.5	0.0	3.4	3.1	7.4	5.0	0.5	0.4	7.5	7.2	0.5	0.5
				Fre	equency	(Hz)							
	1000	1250	1600	2000	2500	3150	4000	5000	6300	Awt	Lin		
#1	Residual I	ressure	_Intensi										
Ieq		-48.0	59.1	-36.6	53.3	51.4	50.7	41.2	-29.7	63.0	61.5		
Leg		77.5	76.8	73.3	75.2		76.2			86.0	87.6		
Lk	23.2	_ 29.5	17.6	36.6	21.8	22.9	25.5	32.9	30.4	23.0	26.1		
_	Inside the					60.0	40.5		50.0	100.5	105.4		
leq		-93.1	-78.6			-68.9				-100.5	_		
Lec			83.6		81.2					104.1	110.1		
Lk #2	6.4 Inside the	2.0			#2 10.6	8.8	19.9	11.1	12.1	3.6	2.7		
Ieq	~			-76.0		-71.5	-59.8	53.7	53.9	08.0	-107.0		
Lec					80.3						109.5		
Lk	•		13.5	7.8	7.3		8.5			3.6	2.5		
#4	Inside the	Duct -	50 mm -	Position :	#3	0.1	0.0	11.7	10.0	5.0	2.5		
Ieq				-80.2		-66.9	51.4	52.0	49.9	-98.1	-106.6		
Lec		89.2	84.2	86.4		77.5		64.8	64.8	101.4	108.8		
Lk		8.3			10.0	10.6	16.2	12.8	15.0	3.3	2.2		
_	Inside the												
leq				-78.3		-70.3				-100.1			
Lec					82.0					104.1	110.2		
Lk	7.2 Inside the	3.0	5.7	7.7	13.5	9.4	13.8	8.1	5.8	4.0	2.9		
			- 11111 - 73.7			-75.1	-61.2	-62.8	-59.2	00.2	-107.1		
leq Lec	90.5	91.6	85.5	85 A	82.5	80.7	74.0	70.0	66.9	102 9	100.1		
Lk	a 90.5	5.5	11.7	85.4 8.0	7.6	5.7	12.8	70.0	77	3.8	26		
	Inside the	Duct -	12 mm -	Position :	#3	5.,	12.0		,.,	5.0	2.0		
Ieq					-75.6	-68.3	-65.9	-62.5	-56.5	-98.3	-106.7		
Lec		90.8				81.1		69.9	66.7	101.8	108.9		
Lk						12.8	7.4	7.3	10.1	3.5	2.1		
#8	Inside the			Position:	#4	_							
leq					-75.0	-71.5				-100.3			
Lec		89.2	86.2			81.0					110.2		
Lk	8.9 Inside the		4.1	9.1	7.5 #5	9.4	11.3	5.3	5.8	3.5	2.6		
leq						-74.4	-66.0	-62.6	-63.3	00.5	-107.5		
Lec					84.1						109.7		
Lk			13.7								2.2		
	Inside the	e Duct -	12 mm	- Position		5.7	7.1		5.5	J.4	ب.ب		
Ïeq						-72.9	-60.5	-64.8	-62.7	-99.0	-107.2		
Lec				86.2	83.5	81.4					109.4		
Lk	4.2	8.6	4.5	9.6	6.8					3.5	2.1		
_	Inside the												
Ieq						-64.1				-100.0			
Le						77.6			_		110.1		
Lk	8.8	5.1	4.7	9.3	9.8	13.6	13.3	6.1	8.7	3.3	2.6		

#12	Inside the										
Ieq	-83.5	70.3	-71.9	-78.9	-76.0		44.1	52,2	55.9	-99.4	-107.4
Leq	90.3	86.7	84.2	85.9	81.8	77.1	67.7	65.2	66.0	102.5	109.7
Lk	6.9	16.3	12.3	7.0	5.8	6.6	23.5	13.1	10.2	3.1	2.3
#13	Inside the										
leq	-88.2	-81.3	-80.7	-71.8		-69.9	-51.3	57.1	56.4	-98.8	-106.9
Leq		89.2		84.3	80.7	77.3	68.0	65.8	65.8	102.1	109.2
Lk	4.0	7.9	4.4	12.6	6.8	7.4	16.7	8.8	9.4	3.4	2.3
	Inside the	Duct	50 mm -	Position		7.4	10.7	0.0	7.7	5.4	2.5
leq	69.8	-90.0		-79.0	"-75.9	-66.5	-58.6	60.0	56.6	-100.6	107.7
Leq		94.7		84.7	82.7	80.2	70.5	67.6	67.2	104.4	110.2
Lk	21.6	4.7		5.7	6.8	13.7	11.9	7.6	10.6	3.7	2.6
	Inside the					13.7	11.9	7.0	10.0	3.1	2.0
-	-84.4	-83.0		-80.1	#6 -74.4	-72.9	-62.1	55.6	50.3	00.4	-107.3
Ieq											
Leq		91.4		86.3	81.5	79.2	69.2	65.2	66.1	103.2	109.7
Lk	6.1	8.3		6.2	7.1	6.3	7.1	9.6	15.8	3.6	2.4
	Inside the										
Ieq	-87.6	-88.7		-78.3	-71.9	65.1	-57.6	57.7	54.2		-107.0
Leq	91.5	91.7		87.2	83.0	78.7	69.4	66.5	66.9	102.3	109.0
Lk	3.9	3.0		8.8	11.2	13.6	11.9	8.8	12.7	3.0	2.0
	Inside the										
Ieq	76.2	-87.9		-80.2	-74.4		-67.4	-66.8	-62.1	-100.2	-107.6
Leq	88.4	92.6	85.8	85.9	82.3	80.3	74.3	71.1	67.3	103.8	110.1
Lk	12.2	4.7	5.5	5.7	7.9	10.0	6.8	4.3	5.2	3.6	2.5
#18	Inside the	Duct -	12 mm	- Position	#8						
Ieq	-83.6	-80.8		-77.4		-69.9	-68.3	-65.3	-58.6	-99.3	-107.2
Leq	90.3	89.4		85.7	83.0	80.3	73.7	70.5	66.9	102.8	109.6
Lk	6.7	8.6		8.3	7.2	10.4	5.4	5.2	8.4	3.5	2.4
	Inside the			- Position	#9					2.0	
leq	-87.8	-88.2		-78.2		-70.5	-65.6	-62.9	-61.8	-99.1	-107.1
Leq		92.9		87.5	84.0	80.2	73.0	69.9	68.0	102.5	109.1
Lk	4.3	4.8			18.5	9.7	7.4	7.1	6.3	3.3	2.0
#20	Horizont	al Surfa	re - 12 n	nm - 3" A	10.5	7.1	7.7	7.1	0.5	ر.ر	2.0
leq	-53.0		47.2	-47.1	Way 122	-38.2	-30.0	-24.3	-19.4	-63.6	-78.0
Leq					50.5		38.0	32.8	28.3	78.8	86.9
Lk	8.4				8.3	8.0	8.0	8.5	8.9	15.2	8.9
						8.0	8.0	8.5	8.9	15.2	8.9
	Vertical S					27.0	00.0	02.0	10.4	60.0	60.1
Ieq	-55.0					-37.0	-28.3	-23.8	-12.4	-68.8	68.1
Leq			54.1				36.1	32.6	30.0	80.0	87.7
Lk	6.1	5.5	5.6		6.6	6.9	7.8	8.8	17.6	11.2	19.6
	Horizont	al Surfa	ice - 50 n	nm - 3" A	way						
Ieq	-52.5					-37.0	-27.8	-21.4	-11.9	-62.2	-76.7
Leq				54.8	49.4		36.5	31.8	28.9	78.8	86.9
Lk	8.6		9.0	8.5	8.2	7.8	8.7	10.3	16.9	16.6	10.2
	Vertical S										
Ieq						-35.7	-26.7	-21.1	-13.7	-72.2	-81.4
Leq	61.4	59.6	54.0	53.0	48.1	42.8	34.9	31.2	28.8	80.3	
Lk	6.3				6.7		8.1	10.0	15.1	8.1	6.6
									· -		

Table 7:
Processed intensity data from Table 6.
B&K probe: 50mm probe data used up to 400Hz, 12mm probe data above that.

Surfac	e, and di 50	stance 63	80	100	125	160	200	250	315	400	500	630	800
Horiza Ieq PEI	ontal, 7.5 NA 6.6	cm 72.1 17.3	69.3 20.3	68.4 35.1	70.9 21.6	67.1 18.9	68.0 17.3	68.1 10.2	-69.5 9.3	NA -0.8	NA 6.6	NA 6.3	42.4 9.1
Vertic Ieq PEI	al, 7.5cm 73.4 14.5	70.9 18.5	65.6 16.7	68.7 34.1	71.3 22.0	63.6 16.4	69.7 17.3	73.4 14.4	76.7 14.2	62.7 13.6	NA 6.4	59.5 7.3	54.0 9.3
	1000	1250	1600	2000	2500 3	3150	4000	5000					
Horiza Ieq PEI	ontal, 7.5 40.5 10.9	cm 38.0 9.8	NA 1.2	35.0 13.1	NA 6.6	30.5 9.0	27.2 9.0	24.3 9.3					
Vertic Ieq PEI	al, 7.5cm 55.0 10.9	54.0 17.8	NA 5.8	46.9 24.0	42.0 9.0	37.0 9.8	28.3 11.5	23.8 17.9					
Intensity Measurements inside duct													
Positi	on 1 94.2	95.7	91.9	93.1	93.3	92.9	96.9	102.2	101.4	89.1	90.1	94.8	78.6
Positi	ion 2 94.7	95.7	91.4	92.7	93.8	93.0	96.7	101.9	101.3	88.2	88.2	92.8	82.3
Posit	ion 3 94.1	96.1	91.4	92.9	93.6	92.7	96.7	101.9	100.7	86.2	82.8	88.0	79.2
Posit	ion 4 94.4	96.0	91.5	93.1	93.8	93.4	97.2	102.4	101.8	89.9	90.7	96.5	85.8
Posit	ion 5 94.8	95.9	91.6	93.5	94.2	93.3	97.2	102.5	101.7	89.3	88.1	94.1	84.6
Posit	ion 6 94.6	95.9	91.6	93.1	93.9		96.7	102.0	101.3	87.7	83.5	90.5	81.9
Posit		95.8	92.2	93.1	93.8		96.7		102.0	90.2	91.2	95.8	86.1
Posit		96.2	92.0	92.8	93.9		96.9	102.1	101.7	89.7	88.8	93.8	86.1
Posit		96.1	91.7	93.5	93.6		96.4		101.7	88.5		90.3	86.0
Mean	Intensity 94.5		91.7	93.1	93.8		96.8				84.3	-	
	1000	1250	1600	2000	2500				101.5	88.9	88.4	93.7	84.2
D!•		1230	1000	2000	2300 .	3130	4000	5000					
Posit	84.3	91.2	79.8	78.3	68.5	70.3	60.3	61.9					
Posit	84.3	86.1	NA	77.4	74.9	75.1	61.2	62.8					
Posit	87.1	82.8	NA	83.0	75.6	NA	65.9	62.5					
Posit	83.2	83.9	82.1	76.9	75.0	71.5	62.5	65.5					
Posit	83.8	NA	NA	81.7	78.6	74.4	66.0	62.6					
Posit	ion 6 88.8	81.9	NA	76.6	76.6	72.9	NA	64.8					
Posit	ion 7 NA	87.9	NA	80.2	74.4	NA	67.4						
Posit	ion 8 83.6	80.8		77.4		NA	68.3						
Posit		88.2		78.2			65.6						
Mean	Intensity 85.9			79.4		NA	65.4						

Table 8: Sound intensity measurement in large reverberation room. Fan source: 2170 rpm. Static pressure 50 Pa.

	50	63	80	100	125	160	200	250	315	400	500	630	800
#1 Re	sidual Pre												
Ieq	-58.2	-54.9	-50.4	35.6	48.2	49.9	50.8	50.5	49.7	48.8	49.5	49.1	48.6
Leq	74.1	74.1	74.1	74.3	74.1	74.2	74.2	74.0	73.9	73.9	73.7	73.6	74.0
Lk Î	15.9	19.2	23.8	38.7	25.9	24.2	23.5	23.5	24.2	25.1	24.3	24.5	25.4
#2 Ho	rizontal S	Surface -	50 mm	- 3" Awa	ay								
Ieq	-51.8	-56.6	-57.1	-53.6	-54.9	-49.8	-45.9	-39.7	40.2	-26.4	-43.4	-41.1	-43.9
Leq	66.5	59.2	58.6	56.1	59.7	56.0	51.9	53.3	56.4	55.8	53.0	52.2	52.8
Lk •	14.7	2.6	1.4	2.5	4.9	6.2	6.0	13.6	16.1	29.4	9.6	11.1	9.0
#3 Ve	rtical Sur	rface - 50	0 mm - 3	3" Away									
Ieq	-62.7	-54.6	-54.5	-54.6	-54.6	-47.3	-47.2	-45.6	-48.5	-46.0	43.1	-43.5	-45.5
Leq	64.0	56.8	57.7	57.0	58.3	53.7	53.0	53.6	57.4	55.9	52.4	51.3	52.0
Lk	1.3	2.2	3.2	2.4	3.7	6.4	5.8	8.0	8.9	9.9	9.3	7.9	6.4
#4 Hc	rizontal S	Surface	- 12 mm	- 3" Awa	ay								
Ieq	-55.7	-56.8	-56.1	-53.3	-54.1	-49.7	-45.2	-31.6	43.3	38.6	-41.9	-39.0	-42.4
Leq	65.9	58.9	58.0	55.6	59.2		51.6	52.8	56.0	55.3	52.7	52.0	52.5
Lk Î	10.2	2.0	1.8	2.3	5.1		6.4	21.2	12.7	16.7	10.8	13.0	10.1
#5 Ve	rtical Su	rface - 1	2 mm - 3	3" Away									
Ieq	-63.6	-54.0	-55.1	-54.9	-54.6	-47.3	-46.0	-44.7	-47.9	-45.4	-41.4	-42.7	-45.2
Leq	64.2	57.0	57.7	56.8	58.5	53.7	52.8	53.5	57.3	55.9	52.1	51.3	52.1
Lk '	0.6	3.1	2.6	2.0	3.9		6.8	8.8	9.5	10.5	10.7	8.6	6.9
	1000	1250	1600	2000	2500	2150	4000	5000	6200	Asset	I in		
#1 Da			1600		2500 :	3150	4000	5000	6300	Awt	Lin		
	esidual Pr	essure_l	ntensity	Index									
Ieq	sidual Pr 49.7	essure_l 53.7	ntensity 56.6	Index -45.0	52.8	49.3	50.6	48.1	33.2	62.1	59.6		
Ieq Leq	esidual Pr 49.7 75.3	essure_] 53.7 77.6	intensity 56.6 76.8	Index -45.0 73.3	52.8 75.2	49.3 74.4	50.6 76.4	48.1 74.3	33.2 60.2	62.1 86.1	59.6 87.7		
Ieq Leq Lk	esidual Pr 49.7 75.3 25.6	essure_l 53.7 77.6 23.9	ntensity 56.6 76.8 20.2	Index -45.0 73.3 28.4	52.8 75.2 22.3	49.3 74.4	50.6	48.1	33.2	62.1	59.6		
Ieq Leq Lk #2 He	esidual Pr 49.7 75.3 25.6 orizontal	essure_1 53.7 77.6 23.9 Surface	56.6 56.8 76.8 20.2 - 50 mm	Index -45.0 73.3 28.4 1 - 3" Aw	52.8 75.2 22.3 av	49.3 74.4 25.0	50.6 76.4 25.7	48.1 74.3 26.2	33.2 60.2 27.0	62.1 86.1 23.9	59.6 87.7 28.1		
Ieq Leq Lk #2 He Ieq	esidual Pr 49.7 75.3 25.6 orizontal -41.7	73.7 77.6 23.9 Surface -38.6	56.6 56.8 76.8 20.2 - 50 mm	' Index -45.0 73.3 28.4 n - 3" Aw -35.3	52.8 75.2 22.3 ay -33.2	49.3 74.4 25.0	50.6 76.4 25.7 -27.3	48.1 74.3 26.2 -23.5	33.2 60.2 27.0 -16.3	62.1 86.1 23.9 -49.7	59.6 87.7 28.1 -62.6		
Ieq Leq Lk #2 He Ieq Leq	esidual Pr 49.7 75.3 25.6 orizontal -41.7 49.4	77.6 23.9 Surface -38.6 46.0	56.6 76.8 20.2 - 50 mm -35.1 48.4	' Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8	52.8 75.2 22.3 ay -33.2 41.4	49.3 74.4 25.0 -30.8 39.2	50.6 76.4 25.7 -27.3 36.5	48.1 74.3 26.2 -23.5 33.7	33.2 60.2 27.0 -16.3 30.7	62.1 86.1 23.9 -49.7 59.7	59.6 87.7 28.1 -62.6 69.7		
Ieq Leq Lk #2 Ho Ieq Leq Lk	esidual Pr 49.7 75.3 25.6 orizontal -41.7 49.4 7.7	53.7 77.6 23.9 Surface -38.6 46.0 7.4	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3	7 Index -45.0 73.3 28.4 n - 3" Aw -35.3 43.8 8.6	52.8 75.2 22.3 ay -33.2 41.4 8.2	49.3 74.4 25.0 -30.8 39.2	50.6 76.4 25.7 -27.3	48.1 74.3 26.2 -23.5	33.2 60.2 27.0 -16.3	62.1 86.1 23.9 -49.7	59.6 87.7 28.1 -62.6		
Ieq Leq Lk #2 He Ieq Leq Lk #3 Ve	esidual Pr 49.7 75.3 25.6 orizontal 41.7 49.4 7.7 ertical Su	77.6 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3	- Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away	52.8 75.2 22.3 ay -33.2 41.4 8.2	49.3 74.4 25.0 -30.8 39.2 8.4	50.6 76.4 25.7 -27.3 36.5 9.2	48.1 74.3 26.2 -23.5 33.7 10.1	33.2 60.2 27.0 -16.3 30.7 14.4	62.1 86.1 23.9 -49.7 59.7 10.0	59.6 87.7 28.1 -62.6 69.7 7.1		
Ieq Leq Lk #2 Heq Leq Leq Lk #3 Verified	49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9	ressure_1 53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm -	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0	52.8 75.2 22.3 ay -33.2 41.4 8.2	49.3 74.4 25.0 -30.8 39.2 8.4 -29.9	50.6 76.4 25.7 -27.3 36.5 9.2	48.1 74.3 26.2 -23.5 33.7 10.1	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9	62.1 86.1 23.9 -49.7 59.7 10.0	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1		
Ieq Leq Lk #2 Heq Leq Leq Lk #3 Veq Leq Leq	49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2	essure_1 53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm - -37.1 48.8	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5	49.3 74.4 25.0 -30.8 39.2 8.4 -29.9 37.1	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3		
leq Leq Lk #2 He leq Leq Lk #3 Ve Ieq Leq Lk	49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3	essure_1 53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm - -37.1 48.8 11.7	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1 7.2	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9	49.3 74.4 25.0 -30.8 39.2 8.4 -29.9 37.1	50.6 76.4 25.7 -27.3 36.5 9.2	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9	62.1 86.1 23.9 -49.7 59.7 10.0	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1		
leq Leq Lk #2 He leq Leq Lk #3 Ve leq Leq Lk #4 H	49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3 orizontal	essure_1 53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3 Surface	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm - -37.1 48.8 11.7 - 12 mm	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1 7.2 1 - 3" Aw	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9	49.3 74.4 25.0 39.2 8.4 6 -29.9 37.1 7.2	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7 8.0	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2 9.6	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4 13.5	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3 7.8	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3 3.2		
leq Leq Lk #2 He leq Leq Lk #3 V leq Leq Lk #4 H leq	49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3 orizontal -40.5	53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3 Surface -38.0	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 00 mm - -37.1 48.8 11.7 - 12 mm -35.1	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1 7.2 n - 3" Aw -35.0	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9	49.3 74.4 25.0 39.2 8.4 6 -29.9 37.1 7.2 8 -30.5	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7 8.0	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2 9.6 -24.3	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4 13.5 -17.1	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3 7.8 -48.3	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3 3.2 -62.6		
leq Leq Lk #2 Ho leq Lk #3 Vo leq Leq Lk #4 H leq Leq	49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3 orizontal -40.5 49.0	53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3 Surface -38.0 45.9	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm - -37.1 48.8 11.7 - 12 mn -35.1 47.9	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1 7.2 1 - 3" Aw -35.0 44.1	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9 vay -32.8 42.3	49.3 74.4 25.0 -30.8 39.2 8.4 6-29.9 37.1 7.2 3-30.5 40.3	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7 8.0 -27.2 37.7	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2 9.6 -24.3 35.0	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4 13.5 -17.1 31.7	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3 7.8 -48.3 59.4	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3 3.2 -62.6 69.2		
Ieq Leq Lk #2 Ho Ieq Lk #3 Vo Ieq Leq Lk #4 H Ieq Leq Lk	49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3 orizontal -40.5 49.0 8.5	53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3 Surface -38.0 6.3	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm - -37.1 48.8 11.7 - 12 mm -35.1 47.9	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1 7.2 1 - 3" Aw -35.0 44.1 9.1	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9 'ay -32.8 42.3 9.5	49.3 74.4 25.0 -30.8 39.2 8.4 6 -29.9 37.1 7.2 3 -30.5 40.3	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7 8.0	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2 9.6 -24.3 35.0	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4 13.5 -17.1	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3 7.8 -48.3	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3 3.2 -62.6		
leq Leq Lk #2 He leq Leq Lk #3 V leq Leq Lk #4 H leq Leq Lk #5 V	esidual Pr 49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3 orizontal -40.5 49.0 8.5 ertical Su	53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3 Surface -38.0 45.9 7.9	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm - -37.1 48.8 11.7 - 12 mm -35.1 47.9 12.8 2 mm -	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1 7.2 1 - 3" Aw -35.0 44.1 9.1 3" Away	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9 yay -32.8 42.3 9.5	49.3 74.4 25.0 -30.8 39.2 8.4 6 -29.9 37.1 7.2 8 -30.5 40.3 9.8	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7 8.0 -27.2 37.7 10.5	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2 9.6 -24.3 35.0 10.7	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4 13.5 -17.1 31.7 14.6	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3 7.8 -48.3 59.4 11.1	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3 3.2 -62.6 69.2 6.6		
leq Leq Lk #2 He leq Leq Lk #4 H leq Leq Lk #5 V leq	esidual Pr 49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3 orizontal -40.5 49.0 8.5 ertical Su -41.6	53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3 Surface -38.0 45.9 7.9 urface - 1	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm -37.1 48.8 11.7 - 12 mn -35.1 47.9 12.8 2 mm -	- Index -45.0 -73.3 -28.4 -3" Aw -35.3 -43.8 -35.0 -42.1 -7.2 -35.0 -44.1 -9.1 -3" Away -35.6	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9 ray -32.8 42.3 9.5	49.3 74.4 25.0 39.2 8.4 39.2 8.4 6 -29.9 37.1 7.2 3 -30.5 40.3 9.8 2 -31.0	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7 8.0 -27.2 37.7 10.5	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2 9.6 -24.3 35.0 10.7 -25.9	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4 13.5 -17.1 31.7 14.6	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3 7.8 -48.3 59.4 11.1	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3 3.2 -62.6 69.2 6.6		
leq Leq Lk #2 He leq Leq Lk #3 V leq Leq Lk #4 H leq Leq Lk #5 V	esidual Pr 49.7 75.3 25.6 orizontal -41.7 49.4 7.7 ertical Su -41.9 48.2 6.3 orizontal -40.5 49.0 8.5 ertical Su	53.7 77.6 23.9 Surface -38.6 46.0 7.4 rface - 5 -39.3 45.6 6.3 Surface -38.0 45.9 7.9	56.6 76.8 20.2 - 50 mm -35.1 48.4 13.3 0 mm - -37.1 48.8 11.7 - 12 mm -35.1 47.9 12.8 2 mm -	7 Index -45.0 73.3 28.4 1 - 3" Aw -35.3 43.8 8.6 3" Away -35.0 42.1 7.2 1 - 3" Aw -35.0 44.1 9.1 3" Away	52.8 75.2 22.3 ay -33.2 41.4 8.2 -32.5 39.5 6.9 yay -32.8 42.3 9.5	49.3 74.4 25.0 39.2 8.4 39.2 8.4 7.2 9.8 37.1 7.2 40.3 9.8 2 -31.0 38.5	50.6 76.4 25.7 -27.3 36.5 9.2 -26.7 34.7 8.0 -27.2 37.7 10.5 -28.9 36.3	48.1 74.3 26.2 -23.5 33.7 10.1 -22.7 32.2 9.6 -24.3 35.0 10.7 -25.9 34.0	33.2 60.2 27.0 -16.3 30.7 14.4 -16.9 30.4 13.5 -17.1 31.7 14.6	62.1 86.1 23.9 -49.7 59.7 10.0 -51.5 59.3 7.8 -48.3 59.4 11.1	59.6 87.7 28.1 -62.6 69.7 7.1 -65.1 68.3 3.2 -62.6 69.2 6.6		

Table 9: Sound intensity measurements in large reverberation room. Processed intensity data from Table 8. B&K probe: 50mm probe data used up to 400Hz, 12mm probe data above that.

Surface	and Dis	stance		Fre	quency	(Hz)							
	50	63	80	100	125	160	200	250	315	400	500	630	800
Horizontal, 7.5cm													
Ieq	NA	56.6	57.1	53.6	54.9	49.8	45.9	39.7	-40.2	NA	41.9	NA	42.4
PEÎ	1.2	16.6	22.4	36.2	21.0		17.5	9.9	8.1	-4.3	7.3	5.3	9.1
Vertica	վ 7.5c։	n											
			54.5	54.6	54.6	47.3	47.2	15.6	18.5	46.0	<i>11 1</i>	12.7	45.2
													12.3
1 21	14.0	17.0	20.0	50.5	42.2	17.0	17.7	15.5	15.5	13.4	7.4	7.7	12.5
	1000	1250	1600	2000	2500 3	3150	4000	5000					
Horizo	ntal. 7.5	em											
_			NΑ	35.0	NΔ	30.5	27.2	24.3					
* 12.	10.7	7.0	1.2	15.1	0.0	7.0	7.0	7.5					
Vertica	al, 7.5cm												
Iea	41.6	39.4	NA	35.6	33.2	31.0	28.9	25.9					
P E Î	12.6	11.3	2.0	15.4	8.9		12.0	11.9					
Vertical leq PEI Horizo leq PEI Vertical	1 7.5cm 62.7 14.6 1000 ntal, 7.5c 40.5 10.9 al, 7.5cm 41.6	n 54.6 17.0 1250 cm 38.0 9.8	54.5 20.6 1600 NA 1.2 NA	54.6 36.3 2000 35.0 13.1 35.6	54.6 22.2 2500 3 NA 6.6	47.3 17.8 3150 30.5 9.0 31.0	47.2 17.7 4000 27.2 9.0 28.9	45.6 15.5 5000 24.3 9.3 25.9	48.5 15.3	46.0 15.2	7.3 41.4 7.4	42.7 9.7	4